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Abstract This article provides an overview of the theory of
electron transfer. Emphasis is placed on the history of key
ideas and on the definition of difficult terms. Among the
topics considered are the quantum formulation of electron
transfer, the role of thermal fluctuations, the structures of
transition states, and the physical models of rate constants.
The special case of electron transfer from a metal electrode
to a molecule in solution is described in detail.
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Introduction

Electron transfer is a type of quantum transition, in which
an electron delocalizes from one stationary state and
localizes in another stationary state, thereby inducing a
change in the occupation number of both states. It is
observed in many processes that occur in nature and has
been widely studied by chemists, physicists, biochemists,
and electrical engineers. This article provides an overview
of the theory of electron transfer, with a focus on electron
transfer from solid electrodes to species dissolved in electro-
lyte solutions. The general situation is illustrated in Fig. 1.

Across the physical sciences, electron transfer is ob-
served in many different contexts and on many different

timescales. In electrochemistry, for example, it is the
principal step in corrosion, electroplating, electrowinning,
and electrolysis generally. It is also the energy-transducing
process in batteries, fuel cells, solar cells, and super-
capacitors. In biology, electron transfer plays a crucial role
in photosynthesis, respiration, nitrogen fixation, and in
many other biochemical cycles. As a result, more than 10%
of the structurally characterized proteins in the Protein Data
Bank are redox proteins, i.e., proteins that participate in, or
catalyze, electron transfer. In environmental science, elec-
tron transfer is fundamental to the chemistry of the world’s
oceans and to the dispersal and remediation of metals in the
natural environment. Finally, electron transfer is central to
the emerging new area of molecular electronics.

Interest in electron transfer has grown enormously over
the past century, and the development of the field has been
aided by contributions from some of the finest minds in
science. However, despite its long and intriguing history, I
have made no attempt in the present work to summarize the
complex interplay of all the various theories that have been
suggested at one time or another. That would be an immense
undertaking. Instead, I have tried to provide a short, logical
introduction to the foundations of the theory, in a form
congenial to the nonexpert. How far I have succeeded in that
task must be left to the judgment of the reader.

Any description of electron transfer requires knowledge
of the behavior and distribution of electrons around atomic
nuclei. This fact was realized very shortly after Joseph
Thomson confirmed the existence of the electron in 1897
[1]. Indeed, Thomson himself tried to develop an electron
theory of valence. However, progress was slow until Niels
Bohr developed the first satisfactory dynamic model of an
atom in 1913 [2]. In Bohr’s model, each electron was
allowed to move in an orbit according to the classical laws
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of electrostatics, and then some ad hoc assumptions were
introduced which had the effect of restricting the electrons
to certain energy states, which corresponded to quantized
values of angular momentum. A defect of Bohr’s model,
however, was that it allowed electrons to have precise
values of position and momentum simultaneously, and
evidence soon mounted against that. In addition, scattering
experiments began to suggest that electrons might have a
wavelike character. The resulting intellectual crisis was not
resolved until 1926 when Erwin Schrödinger formulated
wave mechanics and derived his eponymous equation [3]. It
was one of the triumphs of the Schrödinger approach that
the existence of discrete energy levels followed from the
laws of wave mechanics and not vice versa.

The year after Schrödinger’s work was published,
Werner Heisenberg proposed his famous Uncertainty
Principle [4]. According to the principle, one can never
know the position and momentum of an electron simulta-
neously. At fixed momentum, we must replace certainty
with mere probability that the electron is at a particular
location. Mathematically, this means that we must define
the location of an electron by means of a probability
function. The value of this function necessarily varies from
place to place according to the chance that the electron will
be found there. If we call this function ρ (rho) and accept
that its value might be different in every different volume of
space τ (tau), then ρdxdydz (≡ρdτ) is the probability that a
single electron will be found in the small volume dτ
surrounding the point (x, y, z). For this reason, ρ is called
the probability density function. Rather obviously, since the
single electron must definitely be somewhere in the totality
of space, we also have

Z þ1
�1

r dt ¼ 1 ð1:1Þ

The Born interpretation

A further problem that vexed early researchers was how to
connect the probabilistic character of the electron with its
wavelike character. Max Born solved this problem in 1926
[5, 6]. If we represent the wave function of an electron by a
real number ψ (psi), then according to Born

y2 x; y; zð Þ ¼ r x; y; zð Þ ð1:2Þ

This implies that, for a single electron, the square of the
wave function at a certain location is just the probability
density that the electron will be found there. This is Born’s
Statistical Interpretation of the wave function.

Strictly speaking, Eq. 1.2 works only for an electron in a
stationary state because it is only in that state that the wave
function is a real number. For an electron in a nonstationary
state, the wave function becomes a complex number and ψ2

must then be replaced by the square of its modulus |ψ|2. Or,
what amounts to the same thing, ψ2 must be replaced by
ψψ* where ψ* is the complex conjugate of ψ. However,
these mathematical nuances need not detain us—they are
readily accommodated within the general scheme of
quantum mechanics—and anyway we shall return to them
later. For present purposes, it is sufficient to note that, in all
cases,Z þ1
�1

yj j2 dt ¼ 1 ð1:3Þ

The fact that the probability density ρ(x, y, z) is often
concentrated in certain preferred regions of space justifies
the well-known interpretation of stationary electronic states
as “orbitals” in which the probability of finding the electron
is high. In reality, the wave function of an electron stretches
to infinity in all directions, and there is always a chance,
however small, of finding an electron at an arbitrarily large
distance from an atomic nucleus. However, for many
purposes, it is often sufficient to note that 90% (say) of
the electron’s wave function is concentrated inside a well-
defined lobe emanating a short distance from an atom or
molecule. The utility of this idea should not be under-
estimated: as we shall see later on, the ready visualization
of the overlap of orbitals provides an intuitive and easy-to-
grasp method of deciding if electron transfer will occur or
not.

Pathways and probabilities

One of the properties of quantum mechanics that is deeply
counterintuitive is the rule for combining probabilities. It is
the wave functions that are additive, not the probabilities.
This leads to some very peculiar outcomes compared with
everyday experience. Suppose, for example, that an electron is

Fig. 1 Electron transfer from a donor species D to an acceptor species
A in an electrolyte solution. In general, D and A may consist of two
molecules, or two electrodes, or one molecule and one electrode.
Throughout the present work, it is assumed that D and A are
surrounded by solvent molecules and electrolyte ions
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able to transfer from a donor species D to an acceptor species
A. And suppose, furthermore, that there are two possible
pathways between D and A, which for convenience we shall
call pathway 1 and pathway 2. Then, it is of some importance
to know how these probabilities combine.

Adopting an obvious notation, let us call the probability
of electron transfer P1 if only pathway 1 is open and P2 if
only pathway 2 is open. Now, we ask what would happen if
both pathways were open at the same time. One might
guess that the combined probability of electron transfer
would be

P1þ2 ¼ P1 þ P2 ð1:4Þ
But that would be wrong! In fact, the combined

probability of electron transfer is

P1þ2 ¼ y1 þ y2j j2 ð1:5Þ
which may be less than either P1 or P2 alone. In other
words, opening a second pathway may actually cause a
decrease in overall probability for electron transfer. Indeed,
this is routinely observed whenever there is destructive
interference between the wave functions ψ1 and ψ2. It
follows that tremendous care must be taken when tracing
multiple pathways of electron transfer through complex
systems. To avoid problems of this type, we shall, for the
remainder of this document, confine our attention to
electron transfer events that proceed through single path-
ways between donor species and acceptor species.

The Schrodinger equation

At the deepest level, the Schrödinger equation is just the
quantum equivalent of the conservation of energy. Classi-
cally, the conservation of energy states that

T þ V ¼ E ð1:6Þ
where T and V are the kinetic energy and potential energy of
the system under consideration, and E is the total energy.
For example, for a single electron of mass m moving along
the x-axis in an electric field such that its electrostatic
potential energy is V(x), Eq. 1.6 would read

1

2
m �x 2 þ V ðxÞ ¼ E ð1:7Þ

or, defining the momentum px ¼ m �x,

p2x
2m
þ V ðxÞ ¼ E ð1:8Þ

Classically, the solution of this last equation gives the
motion (orbit) of the electron. However, in quantum mechan-
ics, the same equation is converted into a wave equation by
means of a Hamiltonian transformation (see Table 1).

Thus, converting to Hamiltonian operators,

H ¼ � h2

2m

@2

@x2
þ V ðxÞ ð1:9Þ

and so

Hy ¼ � h�2

2m

@2y
@x2
þ V ðxÞy ð1:10Þ

Hence, for the time-independent case, we have

Hy ¼ Ey ð1:11Þ
and for the time-dependent case we have

Hy ¼ i h�ð Þ @y
@t

ð1:12Þ

These are the textbook forms of the Schrödinger
equation. In electron transfer theory, we are mainly
concerned with the time-dependent form, Eq. 1.12.

Equation 1.12 is a homogeneous linear partial differen-
tial equation. (Homogeneous because every term depends
on ψ; linear because there are no powers higher than the
first.) Perhaps the most surprising feature of this equation is
that it has an infinite number of solutions, with each
solution representing a possible state of the system. Such an
overabundance of outcomes leads to a natural question: if
there are infinitely many solutions, which one is appropriate
in a given circumstance? Actually, the answer is determined
by the initial and boundary conditions of the problem. At
room temperature, however, we are mostly concerned with
the lowest energy solution, commonly known as the
ground-state solution. It is also natural to ask whether
mathematical solutions of the Schrödinger equation can be
obtained in simple, closed forms. The answer is, generally,
no. In most cases, solutions are obtained as infinite series
whose coefficients must be determined by recurrence
relations.

The Born–Oppenheimer approximation

Closed-form solutions of the time-dependent Schrödinger
equation are possible only for certain special cases of the
electrostatic potential energy V(x). It is particularly unfor-

Table 1 Hamiltonian transformations relevant to quantum mechanics

Term Name Hamiltonian operator

px Momentum h�
i

@
@x

p2x Momentum squared �h�2 @2

@x2

E Total energy (time independent)
p2

2mþ V ðxÞ
E(t) Total energy (time dependent) i h� @

@t

T Kinetic energy �h�2
2m

@2

@x2

ħ (h-bar) is known as the reduced Planck constant
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tunate that the Schrödinger equation is insoluble for all
cases where an electron moves under the influence of more
than one atomic nucleus, as in electron transfer. However,
the equation may be simplified by noting that atomic nuclei
have much greater masses than electrons. (Even a single
proton is 1,836 times heavier than an electron.) Thus, in
classical terms, an electron may be considered to complete
several hundred orbits while an atomic nucleus completes
just one vibration. An immediate corollary is that, to a good
level of approximation, atomic nuclei may be considered
motionless while an electron completes a single orbit in a
single stationary state. This approximation, known as the
Born–Oppenheimer approximation, greatly simplifies the
solution of the Schrödinger equation and finds particular
use in the solution of computationally intensive problems.

Today, the Born–Oppenheimer approximation is widely
used in computer simulations of molecular structure.
Assuming the approximation holds, then the system energy
may be calculated uniquely for every possible position of
the atomic nuclei (assumed motionless). This then allows
one to construct a plot of total energy as a function of all
the nuclear coordinates, yielding a multidimensional “po-
tential energy surface” for the system under study. The
contributing factors to this potential energy surface are

1. The Coulomb attractions between the electrons and the
nuclei

2. The Coulomb repulsions between the electrons
3. The Coulomb repulsions between the nuclei
4. The kinetic energy of the electrons

It is immediately clear that this is not a true potential
energy at all because it contains a mixture of potential
energy and kinetic energy terms. However, it does
determine the position of lowest potential energy of the
atomic nuclei, and so the name is not entirely unreasonable.

Remark The Coulomb attraction between electrons and
nuclei is the only attractive force in the whole of chemistry.

The application of computer simulation methods to
electron transfer systems raises the question of precisely
what is meant by a “system.” Roughly speaking, there are
two different answers to this question, depending on one’s
point of view. The minimalist view is that the system
consists of the donor and acceptor species only. In that case,
there is no “friction” (interaction) between the system and
the rest of the solution, and consequently the donor and
acceptor species conserve their joint energy at all times. As
they mutually interact, potential energy may be converted
into kinetic energy, or kinetic energy may be converted into
potential energy, but the total remains constant, and the
system performs deterministic motions along the potential
energy profile. Although unphysical, except perhaps in

vacuo, this situation is comparatively easy to program on
modern computers and has nowadays attained a certain
level of acceptability. The alternative view is that the sys-
tem consists of the donor and acceptor species plus the
entirety of the surrounding solution (sometimes called the
“heat bath”). In the latter case, there is continual friction
(interaction) between the system and the solution, and
accordingly the energies of the donor and acceptor species
fluctuate wildly. This is more realistic but requires the use
of Gibbs energy profiles rather than potential energy
profiles to characterize the system and also makes the
motion of the system along the reaction coordinate a
stochastic (random) variable. Notwithstanding these com-
plications, we have standardized on Gibbs energy profiles
throughout the present work.

Remark The most probable path between the reactants and
products across the Gibbs energy profile is called the
reaction coordinate, and the maximum energy along this
path is called the Gibbs energy of activation.

For a nonconcerted single-step reaction, beginning at
thermodynamic equilibrium and ending at thermodynamic
equilibrium, the Gibbs energy of activation is supplied by
just one degree of freedom of the system. In this primitive
case, the reaction coordinate may be defined in the
following convenient way.

Definition For a nonconcerted single-step reaction, the
reaction coordinate is just the extensive variable of the
single degree of freedom that takes the system to its
transition state. This might be, for example, the length of a
single chemical bond or the electrical charge on the ionic
atmosphere of an ion.

Remark For a concerted reaction, the reaction coordinate is
necessarily a combination of extensive variables. This is the
case, for example, when electron transfer is accompanied
by bond rupture, a situation that is outside the scope of the
present work.

Tunneling

We now come to the fundamental mechanism of quantum
transitions between stationary states. I refer, of course, to
tunneling. Among the many outstanding successes of
quantum theory over the past 80 years, surely the most
impressive has been the discovery of tunneling. Tunneling
is the quantum mechanical process by which an electron (or
any other light particle) penetrates a classically forbidden
region of space and thus transfers between two separate
points A and B without localizing at any point in between.
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For electrons, a “classically forbidden” region of space
simply means a region of negative electrostatic potential.

The theory of electron tunneling was initiated by
Friedrich Hund in a series of papers published in Zeitschrift
für Physik in 1927, where he called the effect “barrier
penetration” [7–9]. However, his focus was on the
tunneling of electrons between the wells of a double-well
potential in a single molecule, so the results were not of
immediate transferability to electron transfer between
molecules. A more widely applicable theory of tunneling
appeared 1 year later. In 1928, Ralph Fowler and Lothar
Nordheim explained, on the basis of electron tunneling, the
main features of electron emission from cold metals [10].
They were motivated by the fact that electron emission
could be stimulated by high electric fields, a phenomenon
that had deeply puzzled scientists since its first observation
by Robert Wood in 1897 [11]. Also in 1928, Edward
Condon and Ronald Gurney proposed a quantum tunneling
interpretation of alpha-particle emission [12, 13], which led
to widespread acceptance of the tunneling concept. Today,
electron tunneling is recognized as crucially important
throughout chemistry, biology, and solid-state and nuclear
physics.

Before proceeding further, we must also say a few words
about the Franck–Condon principle, which applies to most
cases of electron tunneling. The principle states that, to a
good level of approximation, all the atomic nuclei in a
reacting system are effectively motionless while the process
of electron tunneling takes place. James Franck and E.G.
Dymond initially recognized a special case of this principle
in their studies of the photoexcitation of electrons in 1926
[14]. Edward Condon then generalized the principle beyond
photochemistry in a classic 1928 Physical Review article
entitled “Nuclear Motions Associated with Electron Tran-
sitions in Diatomic Molecules” [15]. Although the Franck–
Condon principle may be justified by arguments similar to
those that are used to justify the Born–Oppenheimer
approximation, it has a much wider scope, as the following
“plain English” definitions make clear.

Definition The Born–Oppenheimer approximation is the
approximation that, in a system of electrons and nuclei, the
atomic nuclei may be considered motionless while an
electron makes a single orbit of a single stationary state.

Definition The Franck–Condon principle is the approxi-
mation that, in a system of electrons and nuclei, the atomic
nuclei may be considered motionless while an electron
makes a quantum transition between two stationary states.

Besides the Born–Oppenheimer approximation and the
Franck–Condon principle, several other methods of ap-
proximation have been developed to help solve the

Schrödinger equation. The most important of these is called
time-dependent perturbation theory. As we have already
mentioned, it is impossible to find exact solutions of the
Schrödinger equation for electrostatic potential energies of
even moderate complexity. However, time-dependent per-
turbation theory allows some complex cases to be solved by
first solving simpler cases and then modifying the results
incrementally. The method was perfected by Paul Dirac in
1927 [16]. Besides introducing an efficient notation, Dirac
also established an important criterion for successful
electron transfer—an electron will localize in an acceptor
species only if it has the same energy as it did in the donor
species.

Dirac’s ideas were introduced into electrochemistry by
Ronald Gurney in 1931 [17]. Gurney provided a very clear
picture of how an electron transfer event occurs. An
electron initially resides in a stationary electronic state of
a chemical species, which we identify as the donor. Nearby,
an empty electronic state exists inside a second chemical
species, which we identify as the acceptor. Due to random
fluctuations of the electrostatic potential energy of both
species, the energies of both states are momentarily
equalized, at which point, the wave function of the electron
begins to build up on the acceptor. By the Born
interpretation, this means that the probability of finding
the electron builds up on the acceptor. When averaged over
a whole population of donor and acceptor species, the rate
of this buildup corresponds to the rate of electron transfer.
In a vacuum, there are of course no random fluctuations of
electrostatic potential energy and so the coincidence of
donor and acceptor energy states is highly improbable. But,
in an electrolyte solution, there are so many random
fluctuations of electrostatic potential energy that coinci-
dences of electron energy states occur billions of times
every second.

To what extent do random fluctuations of electrostatic
potential energy in solution affect the energy of an electron
inside a molecule? Gurney answered this question with
wonderful clarity. Suppose that an electron resides in the
nth energy level of a certain molecule, where it experiences
an electrostatic potential energy V(x, y, z). Call its energy
wn. Then, what we want to know is how this energy changes
to a new value w0n when the electrostatic potential energy of
the surrounding ionic atmosphere changes to a new value V
(x, y, z) + v(x, y, z). The precise answer involves an
integration over the whole of space, thus

w0n � wn ¼
Z þ1
�1

y
»

n vyndt ð1:13Þ

w0n � wn ¼
Z þ1
�1

v ynj j2 dt ð1:14Þ
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However, an approximate (but still sufficiently accurate)
answer can be obtained by noting that the spatial variation
of electrostatic potential energy occurs over long range. For
comparison, the potential energy of two charges q1 and q2 a
distance r apart varies as r−1, whereas the electron density
in orbitals decays near-exponentially with r. With such a
disparity of length scales, it is reasonable to assume that
v(x, y, z) is spatially uniform when evaluating the integral.
In that case, v(x, y, z) ≠ f(τ), and

w0n � wn � v

Z þ1
�1

ynj j2dt ð1:15Þ

w0n � wn � v ð1:16Þ

So the answer to our question is that the energy of an
electron inside a molecule fluctuates by the same amount as
the electrostatic potential energy of the surrounding ionic
atmosphere. For this reason, the energy of an electron
inside an electrolyte solution bounces up and down like a
cork in the ocean.

Yet another fascinating question is, “What is the intrinsic
timescale of electron tunneling?” While it is not yet
possible to give a final answer, we can estimate that the
buildup of an electron’s wave function inside an acceptor
species in an electrolyte solution typically occurs on a
timescale of <1.0 fs. This timescale is determined by the
inertia of the “sea of electrons” in the surrounding medium,
which must equilibrate with the newly occupied state. Such
a timescale is at the limit of present-day measurements and
is exceptionally fast compared with transition-state life-
times, which are typically on the 10–100-fs timescale.
Because of this disparity of time scales, the rate-
determining step in many-electron transfer reactions is
commonly the environmental reorganization needed to
equalize the energies of the donor and acceptor states,
rather than the buildup of the wave function itself. For this
reason, electron transfer is often referred to as a “mixed”
classical–quantum phenomenon.

In summary, electron transfer requires the energies of
two electronic states to be made equal. In electrolyte
solutions, the equalization process occurs by random
fluctuations of the electrostatic potential energies of both
reactive species. The fluctuations are spontaneous; they are
driven by heat; and they occur even at thermodynamic
equilibrium. They are, indeed, equilibrium fluctuations. It is
therefore to this topic that we turn first.

Fluctuations in electrolyte solutions

In this section, we seek to identify, and quantify, the
fluctuations that trigger electron transfer in electrolyte

solutions. We do this on the assumption that the fluctua-
tions are drawn from the same distribution as those that
occur at equilibrium.

Before beginning, let us briefly define what we mean by
an electrolyte solution. An electrolyte is any neutral
substance that dissociates into mobile ions when dissolved
in a solvent. Thus, an electrolyte solution may be any
mixture of mobile ions dissolved in a solvent. Compared
with an ideal solution, an electrolyte solution has an
additional degree of freedom, namely, an ability to store
energy by microscopic displacements of charge.

In 1878, James Clerk Maxwell [18] defined thermody-
namics as

... the investigation of the dynamical and thermal
properties of bodies, deduced entirely from what are
called the first and second laws of thermodynamics,
without any hypotheses as to the molecular constitu-
tion of the bodies.

By contrast, kinetic theories requiremolecular information.
In this section, we shall try, in the spirit of Maxwell, to see
how much we can learn about the theory of equilibrium
fluctuations, without explicitly introducing molecular infor-
mation. While such an approach necessarily excludes the
evaluation of rates, nevertheless, it provides powerful insights
into the kinds of fluctuations that trigger electron transfer
and supplies some stringent bounds on the kinetic theory.

Equipartition of energy

At thermodynamic equilibrium, all classical systems expe-
rience fluctuations of energy whose magnitude, on average,
is ½ kBT per degree of freedom. This is John James
Waterston’s famous equipartition of energy [19]. In the case
of electron transfer in an electrolyte solution, both the
donor and the acceptor species are surrounded by small
volumes of solution that experience such fluctuations, and,
in fact, it is these that create the transition state for the
electron transfer process. For this reason, it is of utmost
importance to describe, and quantify, the various types of
fluctuation that occur at equilibrium in electrolyte solutions.

Consider a small system embedded in a much larger
system (the heat bath). The situation is illustrated in Fig. 2.
The intensive parameters that characterize the small system
are T (temperature), P (pressure), f (mechanical force), and
� (electric potential). Fluctuations of internal energy are
denoted ΔU.

We assume that the small system is so tiny that
equilibrium fluctuations in its thermodynamic parameters
cannot be neglected. Conversely, we assume that the heat
bath is so large that equilibrium fluctuations in its
thermodynamic parameters can be neglected. The heat bath
is also assumed to be isolated from the external world.
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Remark As shown by Boltzmann, equilibrium fluctuations
of the intensive parameters of a small system embedded
inside a large system form a stationary ergodic process.
That is to say, the time-averaged values of the intensive
parameters of the small system are identical to the space-
averaged values of the intensive parameters of the large
system. If it were not so, equilibrium would not be achieved.

From the first law of thermodynamics (the conservation
of energy), we know that any fluctuation in the internal
energy of the small system ΔU must be accompanied by a
complementary fluctuation in the internal energy of the heat
bath ΔUHB,

ΔU ¼ �ΔUHB ð2:1Þ

Further, any fluctuation in the volume of the small
system ΔV must likewise be accompanied by a comple-
mentary fluctuation in the volume of the heat bath ΔVHB,

ΔV ¼ �ΔVHB ð2:2Þ

This latter relation might be called the “no-vacuum”
condition. To understand its importance, consider what
would happen if the small system shrank, but the large
system did not expand by the same amount. Then, a vacuum
would appear between the two systems, and thermal and
hydraulic contact would be lost. Thus, a necessary property of
a perfect heat bath is that it does not lose thermal or
hydraulic contact with the small system inside it.

We begin our analysis by noting that, for a fluctuated
small system having intensive values (T, P, f, �), any
infinitesimal increments in the internal energy Ufluc can be
written

dUfluc ¼ þTdS � PdV þ f dLþ ϕdQ ð2:3Þ

Here, S is entropy; V is volume; L is extension; and Q is
charge. In addition, T is absolute temperature; P is pressure;
f is tension/compression force; and f is electrostatic

potential. We see that each of the terms on the right-hand
side of Eq. 2.3 is the product of an intensive quantity (T, P,
f, f) and the derivative of an extensive quantity (S, V, L, Q).
The full equation tells us that, in principle, we can change
the internal energy of the small system in various ways,
e.g., by changing its entropy S, by changing its volume V,
by distorting it through a distance L, or by changing its
electric charge Q. The absolute magnitudes of the
corresponding internal energy changes are then determined
by the sizes of the intensive quantities (T, P, f, f). For
example, if we increase the charge on the small system by
dQ, then the increase in internal energy is large if the
electrostatic potential f is large and small if the electrostatic
potential is small.

Thermodynamic availability

In the next step, we must connect the behavior of the small
system after it has fluctuated with the behavior before it has
fluctuated. In the latter case, the small system has
temperature T0; pressure P0; tension/compression force f0;
and electrostatic potential �0. (The subscript “0” indicates
the parameter values of the unfluctuated system.) Under
“unfluctuated” conditions, any infinitesimal increments in
the internal energy Uunfluc can be written

dUunfluc ¼ þT0dS � P0dV þ f0dLþ f0dQ ð2:4Þ

and therefore the difference in internal energy between the
fluctuated small system and the unfluctuated small system is

dUfluc � dUunfluc ¼ dΦ ð2:5Þ

In a somewhat different context, the parameter Φ (phi)
was termed the “availability” by Joseph Keenan in 1951
[20]. In engineering texts, it is also sometimes known as the
“exergy” of the overall system, a term coined by Zoran Rant
[21]. Regardless of what one calls it, the thermodynamic
potential Φ is the natural potential for quantifying the energy
that fluctuates reversibly back and forth between a small
system and a large one. Thus, Φ is the natural potential for
quantifying the equilibrium fluctuations in electron transfer
theory (and, indeed, in chemical rate theory).

Remark The thermodynamic potential Φ (availability,
exergy) is the proper measure of the energy gained by a
small system as it experiences an equilibrium fluctuation
inside a much larger system (heat bath). The essential
difference between the internal energy and the available
energy is obvious from the following definitions.

Definition Internal energy (U) is the total energy of a
stationary system that can be dissipated into a vacuum by
nonnuclear processes.

Fig. 2 A small system surrounded by a heat bath. Equilibrium
fluctuations of internal energy ΔU have a large effect on the small
system but a negligible effect on the large system. As a result, the heat
bath retains uniform and constant values of all of its intensive
parameters whereas the small system does not
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Definition Available energy (Φ) is the total energy of a
stationary system that can be dissipated into a heat bath by
nonnuclear processes.

Now let T, P, f, and � be the temperature, pressure,
tension/compression force, and electrostatic potential of the
fluctuated small system inside the heat bath, and let T0, P0,
f0, and �0 be the temperature, pressure, tension/compression
force, and electrostatic potential of the unfluctuated small
system inside the heat bath. Then, by definition,

Φ¼ Ufluc � Uunfluc

¼ U T ;P; f ; fð Þ � U T0;P0; f0; f0ð Þ ð2:6Þ

Because Φ is a function of state, its differential is exact.
Hence,

dΦ ¼ dUfluc � dUunfluc ð2:7Þ
For a system having n degrees of freedom, we know

from the first law of thermodynamics that the detailed
expression for dΦ must contain one heat term (T−T0)dS
plus (n − 1) work terms of the form (Y−Y0)dX. That is,

dΦ ¼ T � T0ð ÞdS þ
X
n�1

Yn�1 � Y0ð Þ dXn�1 ð2:8Þ

Such a system has 2n primary variables arranged in
conjugate pairs whose products have the dimensions of
energy. Examples of such conjugate pairs are (P, V) and (f,
Q). In each case, the extensive variables are the independent
variables. For chemical species in solution, the work terms
are predominantly mechanical (vibrational–librational) or
electrical in character.

For small n, Eq. 2.8 looks reassuringly benign. But, as n
increases, the formula for Φ rapidly becomes unmanage-
able. Large values of n arise naturally in complex systems
because large numbers of vibrational modes are available.
Indeed, it is well known that all nonlinear molecules having
N atoms have 3N–6 vibrational degrees of freedom, so that,
for example, a redox protein has almost as many vibrational
modes as it does atoms. (And even a “small” electron
transport protein like rubredoxin contains 850 atoms!) To
keep the theory of electron transfer within manageable
bounds, we shall therefore find it convenient to limit our
attention to four representative extensive variables, namely
S, V, L, and Q. This allows us to consider four different
types of activation process (thermal, hydraulic, mechanical,
and electrical) for electron transfer, without becoming
bogged down in detail. Thus, we consider

dΦ¼ T � T0ð ÞdS þ P
n�1

Yn�1 � Y0ð ÞdXn�1

¼ T � T0ð ÞdS � P � P0ð ÞdV þ f � f0ð ÞdLþ f� f0ð ÞdQ
ð2:9Þ

We can immediately simplify this formula by noting that
the unfluctuated state is at both mechanical equilibrium

(mechanoneutrality) and electrostatic equilibrium (electro-
neutrality). Hence, f0=0 and f0=0, so that

dΦ ¼ T � T0ð ÞdS � P � P0ð ÞdV þ f dLþ fdQ ð2:10Þ
Formulas for the mean square values of the fluctuations

that occur in the extensive quantities (ΔS, ΔV, ΔL, ΔQ) of
a small system inside a heat bath are readily derived from
Eq. 2.10 and are collected in Table 2. These formulas are
also of interest in nanotechnology because they set limits
on the deterministic behavior of nanoscale devices.

At the moment of electron transfer, conservation of
energy dictates that the availability of the reactants should
match the availability of the products. At this special point,
we refer to the value of the availability as the availability of
activation and label it by an asterisk; thus,

Φ» ¼ U � U0ð Þ» ð2:11Þ
In an analogous way, we label the entropy of activation

as (S−S0)*, the volume of activation as (V−V0)*, the
extension of activation as (L−L0)*, and the charge of
activation as (Q−Q0)*. In general, we expect all of these
parameters to be finite.

Gibbs energy manifold

At constant temperature and pressure of the heat bath (i.e.,
under “normal” laboratory conditions), it is more usual for
chemists to think in terms of Gibbs energy rather than
availability. We can readily convert to Gibbs energy by
means of a Legendre transform of Eq. 2.11. Thus,

d G� G0ð Þ ¼ � S � S0ð ÞdT þ V � V0ð ÞdP þ f dL

þ f dQ ð2:12Þ
Since there are four different terms on the right-hand

side of this equation, we may think of the Gibbs energy
difference (G−G0) as a four-dimensional manifold whose
space is randomly explored by the various combinations of
fluctuations that occur along the four axes (T, P, L, and Q).
However, the most important path through this manifold is

Table 2 Mean square values of the fluctuations that occur in the
extensive quantities (ΔS, ΔV, ΔL, ΔQ) of a small system inside a
heat bath

Entropy < ΔSð Þ2 >¼ kBnCP

Volume < ΔVð Þ2 >¼ kBT0 nVm kT

Extension < ΔLð Þ2 >¼ kBT0=k

Charge < ΔQð Þ2 >¼ kBT0 C

CP is the molar heat capacity at constant pressure (J K−1 mol−1 ); n is
the number of moles; Vm is the molar volume (L mol−1 ); κT is the
compressibility at constant temperature (Pa−1 ); k is the stiffness (N
m−1 ); and C is the capacitance (F)
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the one that maximizes the probability of reaching the
product state. This path is called the “reaction coordinate.”

In chemical kinetics, the temperature and pressure of the
transition state are assumed to be the same as those of the
reactant and product states. This means that dT=0 and dP=
0 along the reaction coordinate, so that two full terms
disappear from Eq. 2.12, leaving only

d G� G0ð ÞRC ¼ f dLþ f dQ ð2:13Þ
The situation is shown schematically in Fig. 3. The Gibbs

energy along the reaction coordinate is a function of L and
Q, but not of T and P. Notice also that the transition state
occurs at a point which is a maximum along the reaction
coordinate but a minimum along all other coordinates.

Remark Despite the disappearance of the entropy and
volume terms from Eq. 2.12, we emphasize that (S−S0)
and (V−V0) are not necessarily 0 along the reaction
coordinate. On the contrary, they most likely have finite
(and, in principle, measurable) values. It is simply that their
conjugate parameters dT and dP are 0.

If we now write the Gibbs energy difference in the form

G� G0ð ÞRC ¼ ΔGRC ð2:14Þ
and integrate Eq. 2.13, we obtain

ΔGRC ¼
Z
L
f dLþ

Z
Q
f dQ ð2:15Þ

This equation is valid provided only that the heat bath is
maintained at constant temperature and pressure. Being
thermodynamic, it is also entirely model free. Indeed, it

subsumes all known models of electron transfer that use
classical equilibrium fluctuations to equalize the energies of
reactants and products.

In Eq. 2.15, an important limiting case is observed if f=
0, that is, if the reactants and their inner solvation shells are
not distorted during the electron transfer process. In that
case, the only fluctuations that are needed to trigger
electron transfer are fluctuations of charge in the ionic
atmosphere of the reactants. The Gibbs energy profile
becomes one dimensional, and the reaction coordinate
becomes the charge Q. (The charge fluctuation model [22].)

Remark ∆GRC is the parameter that is sketched in innumer-
able “Gibbs energy plots” in the electrochemical literature.

It follows from the above analysis that the activation energy
for electron transfer may be expressed in the generic form

ΔG
»

RC ¼
Z L

»

0
f dLþ

Z Q
»

0
f dQ ð2:16Þ

where the asterisk once again indicates the transition state.
This formula, which plays the role of a “master equation,”
may also be incorporated directly into transition-state theory
(TST).

Transition-state theory

Transition-state theory is one of the most enduring theories
of chemical reactions in solution. It is based on the idea that
an “energy barrier” exists between reactants and products.
The original concept may be traced back to the researches
of René Marcelin [23], published posthumously in 1915,
although most modern formulations are actually derived
from the work of Henry Eyring, Meredith Evans, Michael
Polanyi, and Eugene Wigner published in the 1930s [24–
26]. Today, the popularity of TST rests on its ability to
correlate reaction rates with easily measured quantities such
as temperature and concentration.

Many different versions of transition-state theory have
evolved over time, but most of them share the following
assumptions (at constant temperature and pressure):

1. There is thermodynamic equilibrium between all the
degrees of freedom of the system, with the exception of
those that contribute to the reaction coordinate.

2. The transition state occurs at a Gibbs energy maximum
along the reaction coordinate, but at a Gibbs energy
minimum along all other coordinates.

3. Electrons behave according to quantum laws while
nuclei behave according to classical laws (i.e., nuclear
tunneling is disallowed).

4. The rate of reaction never exceeds the response rate of
the heat bath.

Fig. 3 Schematic diagram of the most probable path through the four-
dimensional manifold of Eq. 2.12, at constant temperature and
pressure of the heat bath. Fluctuations of the temperature and pressure
of the small system still occur, but they are orthogonal to the reaction
coordinate and so do not contribute to the activation process. The
transition state is indicated by the asterisk
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5. The rate of reaction is proportional to the number of
nuclei in the transition state.

6. The rate of reaction is proportional to the rate that
individual nuclei leave the transition state in the
forward direction.

In electron transfer theory, all of these assumptions carry
over, except for the last. Regarding the last assumption, the
rate that individual nuclei leave the transition state must be
replaced by the rate at which the electron probability builds
up on the acceptor.

In transition-state theory, the rate constant for electron
transfer (ket) takes the form

ket ¼ k0 exp
�ΔG

»
RC

RT

� �
ð2:17Þ

Here, k0 is the maximum rate constant and ΔG
»
RC is the

activation energy given by Eq. 2.16. When Eq. 2.17 is
combined with Eq. 2.16, we see immediately that electron
transfer requires at most just two types of thermodynamic
fluctuation (thermodynamic work) in order to be activated,
namely (1) elastic distortions of the donor and acceptor
species, which take place against their internal force fields,
and (2) electrostatic charge injections into the environment
of the donor and acceptor species, which take place against
the self-repulsions of the charges.

These are powerful insights. However, while the laws of
thermodynamics reveal the kinds of energy fluctuations that
can trigger electron transfer, the same laws reveal nothing
about the structure of a given transition state or the structure
of the electrolyte solution that surrounds it. Progress in those
areas forms the subject of the next section.

Transition states in electrolyte solutions

In order to understand the structure of transition states in
electrolyte solutions, we must first understand the structure
of electrolyte solutions. Here, we provide a minimum
account of this area, up to and including the theory of
solvation. We then proceed to describe the evolution of
ideas about “inner-sphere” and “outer-sphere” electron
transfer processes.

In the late nineteenth century, the theory of solutions was
developed by analogy with the theory of ideal gases. The
solute was regarded as a set of uncharged spherical
particles, and the solvent was regarded as an inert
continuum through which the particles moved at random.
Individual particles were assumed to be independent, and
their mutual interaction was assumed to be negligible. For
nonionic species, some minor success was achieved by this
approach. For ionic species, however, the method proved
wholly inadequate.

Today, we know why the “ideal solution” approach
failed. Firstly, the high charge density of ions causes them
to attract (and retain) solvent molecules by ion–dipole
coupling. This phenomenon, known as solvation, power-
fully inhibits the translational and rotational motions of
solvent molecules and hence lowers their entropy. Second-
ly, at high concentrations, ions lose their mutual indepen-
dence because their electric fields penetrate far into
solution. Indeed, the electrostatic potential energy of a pair
of point charges varies as r−1, which is very long range
indeed. (Compare the potential energy of the van der Waals
interaction, which varies as r−6.) By having such a long-
range influence, an ion is typically able to interact with a
large population of mobile counterions and co-ions in its
vicinity. This population is known as its “ionic atmo-
sphere.” Though fluctuating continually in structure and
composition, the ionic atmosphere has a time-averaged
charge opposite to that of the central ion and is therefore
electrically attracted to it.

Actually, the time-averaged charge on the ionic atmo-
sphere necessarily balances the charge on the central ion
because of the principle of electroneutrality. If we denote
the valence of the ith type of ion by zi and all the ions are
mobile, then in the absence of an externally applied electric
field we haveX
i

cizi ¼ 0 ð3:1Þ

where ci is the time-averaged number of i-ions per unit
volume. Thus, the charge on the central ion, plus the time-
averaged charge on the ionic atmosphere, equals 0.

Debye–Hückel theory

Historically, the thermodynamics of nonideal solutions
appeared to be an intractable problem until the seminal
work of Peter Debye and Erich Hückel in the 1920s [27,
28]. In 1923, they succeeded in developing a mathematical
model of ionic solutions which included long-range
electrostatic interactions, although they still assumed a
continuum model of the solvent. In their mind’s eye, they
placed one particular ion at the origin of a spherical
coordinate system and then investigated the time-average
distribution of electric potential � (phi) surrounding it.
Instead of the expected Coulomb potential,

fðrÞ ¼ Q

4p"0"r r
ð3:2Þ

they found the screened Coulomb potential,

fðrÞ ¼ Q

4p"0"r r
exp � r

rD

� �
ð3:3Þ
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Here, Q is the charge on the central ion; ε0 (epsilon) is the
permittivity of free space; εr is the relative permittivity
(dielectric constant) of the solution; r is the distance from
the central ion; and rD is a constant. Since the exponential
function has a value less than 1, the effect of long-range
electrostatic interactions between ions is always to diminish
the electric potential of the central ion and, by extension, to
diminish the electric potential of every ion in solution. The
magnitude of this “screening effect” is determined by the
parameter rD, where

rD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"0"rkBT

2NAe2m

s
ð3:4Þ

and

m ¼ 1

2

X
ciz

2
i ð3:5Þ

Here, kB is the Boltzmann constant; NA is the Avogadro
number; e is the elementary charge; μ (mu) is the ionic
strength of the solution (M); ci is the molar concentration of
the ith type of ion; zi is the valence of the ith type of ion;
and the sum is taken over all the ions in solution. The
parameter rD has the dimensions of length and is widely
known as the Debye length. It is noteworthy that the Debye
length is inversely proportional to the square root of the
ionic strength, which is an experimental variable.

The significance of the Debye length rD is that it
measures the radius of the ionic atmosphere surrounding
the central ion. It also indicates the scale of length below
which fluctuations from electroneutrality are significant and
above which they are insignificant. Finally, the Debye
length also determines the distance of closest approach of
two similarly charged ions in solution, since they cannot
approach within 2rD of each other without feeling strong
electrostatic repulsion.

Remark As the ionic strength μ is increased, ions of the
same polarity may approach each other more closely and
thereby increase the probability of electron tunneling
between them.

Overall, the picture that emerges from Debye–Hückel
theory is that every ion in solution is surrounded by a su-
permolecular arrangement of counterions and co-ions. The
time-averaged charge on this “supermolecule” (= central ion
plus ionic atmosphere) is necessarily 0. However, the
instantaneous charge may be positive or negative, depending
on whether there is a transient excess of cations or anions.

As far as electron transfer theory is concerned, the fact
that the time-averaged charge on each supermolecule is 0
has some very important consequences. Consider, for
example, an iron (3+) ion surrounded, on average, by three

mobile chloride ions. If the iron (3+) ion takes part in an
electron transfer process and receives an electron, then it
ends up as an iron (2+) ion, and so its ionic atmosphere
must adjust by expelling a surplus chloride ion. In a similar
way, if an iron (2+) ion loses an electron, then it ends up as
an iron (3+) ion, and at some stage its ionic atmosphere
must adjust by attracting an extra chloride ion. These
charge-compensating events are an intrinsic part of electron
transfer in electrolyte solutions, and the energy associated
with them must be included in any theory.

Remark In the presence of mobile ions, every electron
transfer event is charge-compensated by an ion transfer
event. This is an elementary consequence of the principle of
electroneutrality.

Solvation

Although Debye–Hückel theory is successful in quantifying
electrostatic interactions at long range, it still fails badly at
short range. In particular, it fails to account for solvation
and its many side effects. Quite commonly, solvent
molecules that are immediately adjacent to ions lose some
of their translational and rotational entropy; their dielectric
response becomes saturated; and their molar volume is
compressed below normal. None of these effects is captured
by classic Debye–Hückel theory.

If the solvent is water, then solvation is referred to as
hydration. Formally, the hydration process may be repre-
sented as

Mqþ þ nH2O
 ��! M H2Oð Þn

� �qþ ð3:6Þ

The values of the Gibbs energy, enthalpy, and entropy of
hydration of some main group cations are collected in
Table 3. The entropy loss due to the binding of a single
water molecule is about −28 J K−1 mol−1 at 298 K. Thus,
dividing each entropy of hydration in Table 3 by −28 J K−1

mol−1 yields a “thermodynamic hydration number” n. This
parameter gives a useful indication of the time-averaged
number of water molecules actually bonded to each ion. Of
course, other water molecules are also nearby, but they are
less strongly bonded. From the final column of Table 3, we
readily see that singly charged cations are weakly hydrated,
while multiply charged cations are strongly hydrated.

If electron transfer changes the size of an ion (as it often
does), then it follows that some energy must be supplied to
expand or contract the associated solvation shell. This idea
was first suggested by John Randles in 1952, and it led to
the first successful kinetic theory of electron transfer based
on molecular properties [33].

Things get even more complicated when we look at
transition metal cations. Solutions of these species typically
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consist of coordination complexes (central metal ions with
ligands attached) and mobile counterions to preserve
electroneutrality. The structural principles of coordination
complexes were largely understood by 1913, when Alfred
Werner was awarded the Nobel Prize in Chemistry for his
work in this area [34]. In a virtuoso performance, Werner
had shown that the structure of the compound CoCl3⋅6NH3

was actually [Co(NH3)6]Cl3, with the Co(3+) ion sur-
rounded by six NH3 ligands at the vertices of an
octahedron. The NH3 ligands constituted an “inner”
coordination shell, with the three chloride ions constituting
an “outer” solvation shell in the form of an ionic
atmosphere. Werner had also analyzed analogous com-
plexes containing bidentate ligands, most notably tris
(ethylenediamine) cobalt (III) chloride, [Co(en)3]Cl3.

Outer-sphere and inner-sphere kinetics

Despite Werner’s success in establishing the structural
principles of coordination complexes, the kinetic principles
resisted analysis until much later, mainly because of the
complicated mixtures of ligand substitution and electron
tunneling that were involved. Indeed, progress was stalled
until after World War II, when radioactive tracers such as
60Co and 36Cl became available from cyclotrons in the
USA. In 1949, an epoch-making paper [35] was published
by W.B. Lewis, Charles DuBois Coryell, and John W.
Irvine, Jr., on the mechanism of electron transfer between
the tris(ethylenediamine) complex of Co2+ and the
corresponding complex of Co3+,

»Co enð Þ3
� �2þ � 2Cl� þ Co enð Þ3

� �3þ � 3Cl�
! »Co enð Þ3
� �3þ � 3Cl� þ Co enð Þ3

� �2þ � 2Cl� ð3:7Þ
Here, en=NH2⋅CH2⋅CH2⋅NH2. By using a radioactive

tracer (60Co), these authors showed that, in this special
case, ligand substitution was entirely absent. The ethyl-
enediamine ligands remained firmly bound to the metal

centers throughout the course of the reaction, thus proving
that electron transfer could occur without any interpenetra-
tion of the inner solvation shells of the two reactants. Almost
incredibly (or so it seemed at the time), the electron was
tunneling from one complex to the other without bondmaking
or bond breaking. It was the first example of what was later to
be called an outer-sphere electron transfer process. Today, we
know that electrons can tunnel as much as 1.4 nm through free
space and even further if intervening species (such as water
molecules or ligands) provide conduit electronic states.

Definition An electron transfer process between two
transition metal complexes is classified as outer sphere if
the charge-compensating ion transfer process does not
penetrate the inner coordination shell of either reactant.

Remark This definition of outer-sphere electron transfer
does not exclude the possibility that the inner coordination
shells of both reactants might be elastically distorted during
the reaction.

A few years later, in 1953, Henry Taube, Howard Myers,
and Ronald L. Rich discovered a counterexample to outer-
sphere electron transfer, involving electron transfer from the
hexa(aquo) complex of CrII to the chlorido penta(amino)
complex of CoIII [36, 37]. This reaction can be written

CrII H2Oð Þ6
� �2þ � 2P� þ CoIII NH3ð Þ5»Cl

� �2þ � 2P�
! CrIII H2Oð Þ5»Cl
� �2þ � 2P�
þ CoII NH3ð Þ5H2O
� �2þ � 2P� ð3:8Þ

where (P−) is the perchlorate counterion. By a combination
of spectrophotometry and radioactive tracer studies, the
authors deduced that the radioactive *Cl− ion was acting as
a bridging ligand between the chromium and cobalt metal
centers while the electron transfer occurred (Fig. 4).
Furthermore, a negligible amount of free *Cl− was found

Ion ΔG0
hyd (kJ mol−1) ΔH0

hyd (kJ mol−1) ΔS0hyd (J K−1 mol−1) n

Cs+ −306 −330 −81 2.9

Rb+ −329 −355 −86 3.1

K+ −352 −381 −96 3.4

Na+ −424 −463 −133 4.7

Li+ −529 −579 −164 5.9

H+ −1,104 −1,150 −153 5.5

Ba2+ −1,351 −1,425 −248 8.9

Sr2+ −1,478 −1,565 −290 10.4

Ca2+ −1,607 −1,696 −299 10.7

Mg2+ −1,930 −2,043 −379 13.5

Al3+ −4,674 −4,856 −610 21.8

Table 3 Values of the Gibbs
energy, enthalpy, and entropy of
hydration of some common cat-
ions in water at 298.15 K and
1-atm pressure

Data calibrated against the
hydrogen ion data of Tissandier
et al. [29]. Data collated from
Marcus [30], Schmid et al. [31],
and Wagman et al. [32]. For the
definition of the thermodynamic
hydration number (n), please see
text
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in solution at the end of the reaction. This was the first
example of an inner-sphere (bridged) electron transfer
process. Soon afterwards, numerous other complexes of
the type [CoIII(NH3)5 L]

2+⋅2X− were synthesized, such as L =
F−, Br−, I−, CNS−, N3

−, and these were all found to behave
in a similar way [38].

Definition An electron transfer process between two
transition metal complexes is classified as inner sphere if
the charge-compensating ion transfer process penetrates the
inner coordination shell of either reactant.

Since the discoveries of Lewis et al. and Taube et al., a
vast literature has accumulated on the mechanisms and
kinetics of outer-sphere and inner-sphere electron transfer
reactions. It is particularly interesting to compare the rate
constants of well-attested examples. Some of these are shown
in Table 4. It can be seen that both types of reaction may be
“fast” (ket>10

3 L mol−1 s−1), and both types of reaction may
be “slow” (ket<10

−3 L mol−1 s−1), with the observed rate
constants spanning more than six orders of magnitude in
each category. Even from this small set of data, it is obvious
that the rates of electron transfer reactions are extremely
sensitive to small differences in molecular structure.

How exactly do small differences in molecular structure
exert such a profound effect on the rates of electron transfer
reactions? Thermodynamics provides some clues. It tells us
that, in order to reach the transition state, elastic distortions
of the complexes may be required or charge fluctuations
within the Debye radius of the central ion or both. Thus, the
elastic moduli of the molecules and the local distribution of
electrical charges must both be considered. Once the
transition state has been reached, quantum mechanical
criteria also come into play. The donor and acceptor
orbitals must overlap in order for efficient electron
tunneling to occur, and the orbital symmetries must
coincide (i.e., constructive interference must occur between
the wave functions, not destructive interference). Finally,
the chemical identity of the bridging ligand is a further
consideration. Each ligand generates a different lifetime of
the transition state, and this also affects the probability of
electron transfer. In all these various ways, the structures

of transition metal complexes may influence the rates of
electron transfer.

Research during the 1950s initially found that the vast
majority of electron transfer reactions were inner-sphere
type. The explanation for this bias lay in the electronic
structure of the ligands that were being used. At that time,
there was a particular focus on anionic ligands, and most of
them had lone pairs of electrons that were arranged at 180°
to each other, which meant they were readily able to bridge
the metal centers in the transition state. Examples included
F−, Cl−, Br−, I−, CNS−, N3

−, CN−, SCN−, and ONO−.
Among the few exceptions were H2O and NH3. Later, the
use of neutral organic ligands whose lone pairs of electrons
were all directed inwards towards the central ion (such as
1,10-phenanthroline, ethylenediamine, 2,2′-bipyridine, and
2,2′:6′,2″-terpyridine) began to reverse the trend, and
examples of outer-sphere electron transfer also began to
accumulate.

By the 1960s, however, experimentalists had realized
that all the known inner-sphere and outer-sphere electron
transfer reactions had multiple sensitivities to different
aspects of molecular structure, and this prompted them to
search for kinetically simpler instances of both cases. In the
case of inner-sphere electron transfer reactions, a particu-
larly vexing problem was the short lifetime of the bridged
intermediates, which made them very difficult to study. So
a search began for stable bridge linkages that would allow
spectroscopic measurements on the timescale of seconds.
The triumphant result was the synthesis of μ-pyrazine-bis
(pentaammineruthenium)(II,II) tosylate by Peter Ford at
Stanford in 1967 [43]. This has the formula [(NH3)5Ru(μ-
pyz)Ru(NH3)5]

4+[(Ts)4]
4–, and it was soon oxidized by

Carol Creutz and Henry Taube [44] to make the mixed-
valent (II,III) ion shown in Fig. 5 (the Creutz–Taube ion).
This latter has subsequently become the exemplar of all
mixed-valent compounds [45]. The synthesis of the Creutz–
Taube ion also made it possible to study electron transfer at
fixed separation of the donor and acceptor states, a feat
which eliminated the encounter distance as an experimental
variable.

In the case of outer-sphere reactions, the revised goal
was a redox couple that would not need any elastic
distortions in its inner coordination shell in order to convert
from reactants to products. After some effort, it was found
that the tris(2,2′-bipyridyl)ruthenium complexes Ru(bpy)3

2+

and Ru(bpy)3
3+ had identical octahedral geometries within

experimental error (Ru-N distances=0.2055±0.0005 nm in
both cases) [46]. As expected, this couple exhibited a
phenomenally fast second-order rate constant in aqueous
perchloric acid solution, namely 2×109 L mol−1 s−1 (almost
diffusion-controlled) [47]. Furthermore, the entropy of
reaction was 0 [48, 49]. As a result of these special
features, the tris(2,2′-bipyridyl)ruthenium (II/III) reaction

Fig. 4 Schematic diagram of the inner-sphere (bridged) transition
state discovered by Taube et al. [36, 37]
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gradually became the paradigm of outer-sphere electron
transfer reactions, and it still holds that special status today
(Fig. 6).

Effects of ionic strength

Despite many careful kinetic studies and the synthesis of
innumerable transition metal complexes, one area of
research that was comparatively neglected during the
1950s and 1960s was the effect of the ionic strength of
solution on the rates of outer-sphere electron transfer
processes. In 1982, however, an important paper was
published by Harald Bruhn, Santosh Nigam, and Josef F.
Holzwarth [50].

These authors investigated outer-sphere electron transfer
processes between pairs of highly negatively charged
complexes at different ionic strengths of solution. In
particular, they determined the second-order rate constants
for the reduction of hexachloroiridium(IV) by meso-
tetraphenylporphyrin-tetrasulfonate silver(II),

Mð Þ2
� �2þ

IrIV Clð Þ6
� �2�
þ Mð Þ4
� �4þ

AgII TPPTSð Þ� �4�
! Mð Þ3
� �3þ

IrIII Clð Þ6
� �3�

þ Mð Þ3
� �3þ

AgIII TPPTSð Þ� �3�
ð3:8Þ

where M+ = Li+, Na+, K+, and Cs+. Some of their data are
plotted in Fig. 7. The results demonstrate the effect of
changing the ionic strength of the supporting electrolyte
(M+Cl−). At low ionic strength (μ<0.5 M), electron transfer
takes place through the diffuse layers of both complexes,
and since the probability of electron transfer declines
steeply with increasing separation, the reaction “switches
off.” But at high ionic strength (μ>0.5 M), the diffuse layer
collapses to near-zero thickness, and the rate of electron
transfer saturates.

One way to picture the effect of ionic strength is to
imagine that the solution is composed of neutral ionic
clusters (supermolecules), Fig. 8. Embedded inside each
supermolecule is a reactant ion surrounded by its ionic
atmosphere. As the ionic strength changes, so too does the
thickness of the ionic atmosphere, according to the relation
rD /

ffiffiffiffiffiffiffiffi
1=m

p
(Eq. 3.4).

In summary, the supporting electrolyte plays two
important roles in solution-phase electron transfer. Firstly,
it provides long-range screening of electrically charged
species, allowing them to approach each other without doing
electrostatic work. Secondly, when the species are within
electron tunneling distance, it provides the charge fluctua-
tions that cause the electrostatic potentials of the donor and
acceptor species to equalize, thus ensuring that the electron
transfer takes place with conservation of energy.

Fig. 6 Schematic diagram of the tris(2,2′-bipyridyl)ruthenium com-
plex, the paradigm of outer-sphere electron transfer reactions

Fig. 5 Schematic diagram of the μ-pyrazine-bis(pentaammineruthe-
nium)(II,III) complex (The Creutz–Taube ion)

Table 4 Selected second-order rate constants for inner-sphere and outer-sphere electron transfer reactions in water

Type Donor Acceptor ket (L mol−1 s−1) Ref

Inner sphere CrII H2Oð Þ6
� �2þ � 2P� CrIII H2Oð Þ5NCS

� �2þ � 2P� 1.2×10−4 [39]

Inner sphere CrII H2Oð Þ6
� �2þ � 2P� CoIII NH3ð Þ5Cl

� �2þ � 2P� 2.6×106 [40]

Outer sphere CrII H2Oð Þ6
� �2þ � 2P� CoIII NH3ð Þ6

� �3þ � 3P� 1.0×10−3 [41]

Outer sphere VII H2Oð Þ6
� �2þ � 2P� CoIII phenð Þ3

� �3þ � 3P� 4.0×103 [42]

(P− ) indicates the perchlorate ion. Note that, for inner-sphere reactions, the ion transfers take place in the first coordination shells of the metal
centers, whereas for outer-sphere reactions, the ion transfers take place in the ionic atmospheres of the coordination complexes. For complexes of
this size and shape, the diffusion-limited rate constant is about 3×109 L mol−1 s−1
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Molecular models of electron transfer

In previous sections, we showed that if equilibrium
fluctuations trigger electron transfer, then the activation
energy can be expressed in the generic form

ΔG
»

RC ¼
Z L

»

0
f dLþ

Z Q
»

0
f dQ ð4:1Þ

where ΔG
»
RC is the Gibbs energy of activation; f is

mechanical force; L is extension; f is electric potential;
and Q is charge. We also showed that the two terms on the
right-hand side of this equation correspond to two funda-
mentally different types of activation process, namely (1)
elastic distortions of the donor and acceptor species, which
take place against their internal force fields, and (2) charge
fluctuations within the Debye radius of the donor and
acceptor species, which take place against the self-
repulsions of the charges. In what follows, we describe

molecular models of both of these processes. The elastic
distortion model was elaborated by John Randles in 1952
[33], building on some prewar work of Meredith Evans
[51]. The charge fluctuation model was proposed by
Stephen Fletcher in 2007 [22]. A third model, which
assumes that nonequilibrium fluctuations of solvent mole-
cules trigger electron transfer, was proposed by Rudolph
Marcus in 1956 [52–55] and will be discussed separately
later.

The elastic distortion model

The principal features of the elastic distortion model are
sketched in Fig. 9, using the aqueous Fe(II)/Fe(III) couple
as an example. The Morse-type curves represent the
potential energies of the inner solvation shells of the
ferrous and ferric ions as a function of their radii. These
potential energies were considered by Randles to be the
main contributors to the Gibbs energy of activation of
electron transfer. Here, for ease of exposition, we focus on
the half-reaction

FeIII H2Oð Þ6
� �3þ þ e� ! FeII H2Oð Þ6

� �2þ ð4:2Þ
at an electrode surface and ignore the reverse reaction.

Since the radii of the inner solvation shells of the ferrous
and ferric ions are not identical, it is obvious that some
change in radius must take place during electron transfer.
But at what stage? Randles’ brilliant insight was that “In
accordance with the Franck–Condon principle the electron
transfer will correspond to a vertical transition between the
curves and it is clear that the reaction must proceed over the
energy barrier pqr with the electron transfer occurring at q.”
In other words, what Randles proposed was that some
fraction of the change in radius takes place before the
electron transfer, and some fraction takes place after, with
the precise ratio determined by the location of the
intersection point on the potential energy curves.

Fig. 9 Potential energies of the inner solvation shells of FeII H2Oð Þ6
and FeIII H2Oð Þ6 complexes as a function of their radii. From J.E.B.
Randles [33]. The energy of the lowest vibrational state of Fe(II) is
arbitrarily assigned a value of 0Fig. 8 The concept of a supermolecule (=ion + ionic atmosphere)

Fig. 7 Influence of ionic strength μ on the second-order rate constant
ket for electron transfer between two strongly negatively charged
species in aqueous solution. Data from H. Bruhn et al. [50]
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At the intersection point q (the transition state), the inner
solvation shells of the Fe(II) and Fe(III) ions have equal
radii. Thus, on the Randles model, the activation energy of
electron transfer is just the work required to change the
radius (bond length) of the inner solvation shell from its
lowest vibrational-state value to its transition-state value.

Remark The Randles approach is clearly not valid for
electron transfer to more complex molecules, such as redox
proteins, because it neglects distortions of bond angles and
distortions of torsion angles. However, if desired, it could
readily be extended to include such cases.

A well-known method of calculating the Randles
activation energy is the following [56]. At room tempera-
ture, all molecules exhibit multiple vibrations, which have a
strong tendency to synchronize with each other, forming
what are known as normal modes of vibration. In normal
modes, all the atoms vibrate with the same frequency and
phase. One of the normal modes, known as the spherically
symmetric normal mode, is of special interest because it
describes the radial in-and-out motion of the entire first
solvation shell. By focusing on this mode and excluding all
other modes, it becomes possible to determine the precise
amount of energy needed to expand or contract the first
solvation shell up to its transition-state size.

The beauty of the normal mode analysis is that it allows
theorists to ignore all the complicated energy changes of
individual ligands—which would normally require a mul-
titude of reaction coordinates—and replace them with a
single measure (the energy of extension) which requires
only a single reaction coordinate (the radius of the inner
solvation shell). A further advantage of the analysis is that
the spherically symmetric normal mode is a very loose
mode, having energy levels so close together that they
effectively form a continuum. This allows the Randles
activation energy to be derived without recourse to
quantum mechanics. Indeed, the chemical bonds that
connect the central ion to its solvation shell can be treated
as a single, classical spring that continually exchanges
energy with the surrounding solution.

From Eq. 4.1, in the absence of charge fluctuations, we
have

ΔG
»

RC �
Z L

»

0
f dL ð4:3Þ

where f is force and L is extension. And from Hooke’s law
(“As the extension, so the force...”), we may assume the
linear response relation

f ¼ �kL ð4:4Þ
where k is the spring constant. The negative sign merely
indicates that the force opposes the extension.

Remark Because the physical stretching of chemical bonds
always exhibits nonlinear behavior at high force, one must
not push the linear response relation too far.

Assuming the linear response relation is applicable, the
Gibbs energy that must be supplied to expand or contract
the inner solvation shell is

ΔG
»

RC �
Z L

»

0
kL dL ð4:5Þ

ΔG
»

RC �
kL»2

2
ð4:6Þ

In the scientific literature, Eq. 4.6 is widely known as the
“harmonic oscillator approximation” or simply the “har-
monic approximation.” This is a confusing terminology,
however. For while it is true that Morse-type potential
energy curves are tolerably well approximated by parabolas
and the system would indeed perform simple harmonic
motion if it were isolated, the fact is that the system is not
isolated—it continually exchanges energy with the bulk of
solution—and so the amplitude of the spherically symmet-
ric normal mode actually varies randomly in time. As a
result, the atoms of the solvation shell are executing
motions considerably more complex than those of simple
harmonic motion.

By noting that the extension required to reach the
transition state is

L» ¼ r»� r0 ð4:7Þ
where r* is the transition-state radius of the inner solvation
shell and r0 is the ground-state radius of the inner solvation
shell, we finally arrive at the textbook formula for the
activation energy on the Randles model,

ΔG
»

RC �
k r»� r0ð Þ2

2
ð4:8Þ

This is highly satisfactory. The radius of the inner
solvation shell of the ion acts as the reaction coordinate,
and the transition state occurs at the point on the reaction
coordinate where the Gibbs energy curves of the donor and
acceptor species intersect. Most important of all, this
elegant arrangement also guarantees that the Franck–
Condon principle and the conservation of energy are
satisfied simultaneously.

In passing, we note that the Randles activation energy
can also be written in the form

ΔG
»

RC �
linner þΔG0ð Þ2

4linner
ð4:9Þ

where λinner is the “reorganization energy” of the inner
solvation shell and ∆G0 is the difference in Gibbs energy

720 J Solid State Electrochem (2010) 14:705–739



between the unfluctuated donor and the unfluctuated
acceptor states (i.e., the driving force for the reaction.) In
electron transfer theory, the parameter λinner is a hypothet-
ical quantity, equal to the energy that would be required to
give the reactant the inner solvation shell of the product,
without electron transfer. A formula of this type was first
published by Ryogo Kubo and Yutaka Toyozawa in 1955
[57]. In more recent times, the total reorganization energy λ
of an electrochemical system has been written as the sum of
an inner contribution λinner and an outer contribution λouter,
attributed to the complete reorganizations of the redox
partners and their environment.

The charge fluctuation model

The successful development of the elastic distortion model
by John Randles was a major milestone in the history of
solution-phase electron transfer. However, almost as soon
as it was published, the question arose as to what was
determining the activation energy of electron transfer in
cases where the inner solvation shell was not elastically
distorted or was distorted only slightly. In various guises,
this question has haunted electron transfer theory ever
since. Clearly, some process occurs in the outer solvation
shell that is able to trigger electron transfer. But what is it?

In 2007, it was suggested by Fletcher that the mysterious
process might be the Brownian motion of co-ions and
counterions into and out of the ionic atmospheres of the
reactants [22]. Such a process—which would occur even at
thermodynamic equilibrium—would cause charge fluctua-
tions inside the ionic atmospheres of the donor and acceptor
species, which in turn would drive the system towards the
transition state for electron transfer. This explanation has
many attractive features, including full compatibility with
the Franck–Condon principle, the Debye–Hückel theory,
and the equipartition of energy.

The charge fluctuation model is based on the following
assumptions [22]:

1. There is an ionic atmosphere of co-ions and counter-
ions, so Debye–Hückel screening is present.

2. The charges on the reactant species are fully screened
outside the Debye length.

3. Fluctuations of electrostatic potential are generated
inside the Debye length by the Brownian motion of
co-ions and counterions.

In the original paper, the central results were obtained by
developing an “equivalent circuit” model of the reactant
supermolecules. (Recall that a supermolecule is just an ion
plus its ionic atmosphere.) Here, we derive the same results
in a more elementary way, from Eq. 4.1, in order to
illustrate the similarities and differences with the Randles
model. Just as we did in the case of the Randles model, we

focus on the half-reaction of Eq. 4.2 and ignore the reverse
reaction.

From Eq. 4.1, in the absence of elastic distortions, we
have

$G
»

RC �
Z Q

»

0
f dQ ð4:10Þ

where f is electrostatic potential, and Q is charge. Once
again, we assume a linear response relation, explicitly

f ¼ ΛQ ð4:11Þ
where the coefficient Λ (lambda, a constant) is the electrical
elastance (farad−1) of the ionic atmosphere. Note that this
relation is just the electrical analog of Hooke’s law.
Accordingly, the work that must be supplied to concentrate
the charge on the ionic atmosphere of the donor or acceptor
in the transition state is

$G
»

RC �
Z Q

»

0
ΛQ dQ ð4:12Þ

$G
»

RC �
ΛQ»2

2
ð4:13Þ

Alternatively, writing the elastance Λ as the reciprocal
capacitance 1/C, we have

$G
»

RC �
Q»2

2C
ð4:14Þ

This formula will of course be familiar to electrical
engineers—it is just the work required to charge a
conducting sphere in a dielectric medium. This suggests
that we might justifiably model a supermolecule (ion +
ionic atmosphere) as a conducting sphere in a dielectric
medium. Let us do that here. Since the capacitance of a
conducting sphere is

C ¼ 4p"0"r wð Þa ð4:15Þ
where ε0 (epsilon) is the permittivity of free space, εr(ω) is
the relative permittivity (dielectric constant) of the solution
as a function of frequency ω (omega), and a is the radius of
the sphere, it follows immediately that the Gibbs energy of
activation is

$G
»

RC �
1

2
Q»2 1

4p"0"r wð Þa
� �

ð4:16Þ

Remark The radius of the supermolecule consists of three
main contributions: the radius of the central ion, the
thickness of the inner solvation shell, and the thickness of
the diffuse layer. Through the latter, the radius a depends on
the ionic strength of solution.
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At this point, a new problem must be confronted. Since
the relative permittivity (dielectric constant) of the solution
depends on the frequency ω at which it is perturbed (or,
equivalently, depends on the time scale ω−1 over which the
perturbation is applied), it is necessary to decide which
value of ω is appropriate to our problem. A reasonable
estimate can be obtained from the Franck–Condon princi-
ple, which tells us that molecules possess so much inertia
that they cannot move during the elementary act of electron
tunneling. This implies that the only part of the relative
permittivity that can respond is the electronic part (i.e., the
high-frequency component), viz.

" wð Þ � " 1ð Þ ð4:17Þ
So we finally obtain

$G
»

RC �
1

2
Q»2 1

4p"0"r 1ð Þa
� �

ð4:18Þ

where Q* is the transition-state value of the charge
fluctuation. Just as we found in the Randles model, the
transition state occurs at the point where the Gibbs energy
curves of the donor and acceptor species intersect. Unlike
the Randles model, however, the reaction coordinate is now
the electrical charge on the supermolecule rather than the
mechanical extension of the ligands.

Interestingly, since the mechanical extension and the
electrical charge are independent degrees of freedom of the
system, the total activation energy may be decomposed into
two terms:

$G
»

RC �
k r»� r0ð Þ2

2
þ ΛQ»2

2
ð4:19Þ

However, identification of the dominant term in any
given system must be a matter of empirical enquiry.

For the charge fluctuation model, the results for one
supermolecule can readily be extended to the case of
electron transfer between two supermolecules, D and A,
where D is an electron donor and A is an electron
acceptor [22]. The goal in this case is a formula for the
activation energy of two charge fluctuations of identical
magnitude but opposite sign, one on each supermolecule.
The result is

$G
»

RC ¼
1

2
Q»2 1

4p"0

� �
1

"r 1ð Þ
� �

1

aD
þ 1

aA

� �
ð4:20Þ

where aD is the radius of the donor supermolecule, and aA
is the radius of the acceptor supermolecule. Under normal
conditions, the charge fluctuation on the donor is fraction-
ally negative, and the charge fluctuation on the acceptor is
fractionally positive, and these reverse polarity at the
moment of electron transfer.

The charge fluctuation theory has also been extended to
highly exergonic reactions (the “inverted region”) and to
highly endergonic reactions (the “superverted region”), as
shown in Fig. 10 [58]. The principal results are: (1) In the
inverted region, the donor supermolecule remains positively
charged both before and after the electron transfer event. (2)
In the normal region, the donor supermolecule changes
polarity from negative to positive during the electron
transfer event. (3) In the superverted region, the donor
supermolecule remains negatively charged both before and
after the electron transfer event [58]. This overall pattern of
events makes it possible for polar solvents to catalyze
electron transfer in the inverted and superverted regions by
screening the charge fluctuations on the supermolecules—a
completely new type of chemical catalysis.

In the normal region, where the vast preponderance of
experimental data has been obtained, solvent molecules
outside the supermolecules are not preferentially orientated
in the transition state. If they were, they would have to
reverse their orientation at the moment of electron transfer,
and that process would violate the Franck–Condon princi-
ple. On the other hand, solvent molecules inside the
supermolecules do become attached to the charge fluctua-
tions by ion–dipole coupling and thereby lose rotational
and translational entropy. This means that, on the charge
fluctuation model, the entropy of activation of electron
transfer is necessarily negative. Due to electrostriction, the
volume of activation must likewise be negative.

The solvent fluctuation model

So far, we have discussed the theory of electron transfer
from the viewpoint of processes that occur at equilibrium or
close to equilibrium. Now, we broaden our horizons to

Fig. 10 Schematic diagram showing how the rate constants for
electron transfer (ket) vary with driving force (−ΔG0) and reorgani-
zation energy (λ) on the theory of charge fluctuations [58]
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include processes that occur far from equilibrium. Explic-
itly, we consider the solvent fluctuation model [52, 53].
Since its introduction by Rudolph A. Marcus in the mid-
1950s, this model has enjoyed a tremendous vogue, and
today it represents the most widely accepted theory of
electron transfer in the world.

The solvent fluctuation model is based on the following
assumptions [54, 55]:

1. The ionic atmosphere of co-ions and counterions can be
neglected, so Debye–Hückel screening is absent.

2. The bare charges on the reactant species are screened
only by solvent molecules.

3. Fluctuations of electrostatic potential are generated by
the ordering/disordering of solvent dipoles near the
reactant molecules.

Marcus used a continuum dielectric model for the
solvent, rather than a molecular model, which led to a
number of compact formulas for electron transfer between
ions (but which also made his reaction coordinate difficult
to understand). He also used the same formalism to model
electron transfer between ions and electrodes. However,
due to the unscreened nature of the bare charges on the
reactant species, he was compelled to introduce work terms
for bringing the reactants together and separating the
products, something that is not needed in concentrated
solutions of supporting electrolytes.

On the Marcus model, the transition state for electron
transfer is created by solvent fluctuations. In the normal
region of electron transfer, for a self-exchange reaction, the
idea is that the less-charged species becomes more solvated,
and the more-charged species becomes less solvated, so that
the solvation shells of both species come to resemble each
other. The net effect is a rough cancelation of any entropy
changes in forming the transition state. This contrasts
markedly with the charge fluctuation model, which predicts
that the entropy of activation of electron transfer should
always be negative.

Unfortunately for the Marcus model, there is no well-
attested evidence that the entropies of activation of simple
self-exchange electron transfer reactions are close to 0.
There is, however, a great deal of evidence that the
entropies of activation are substantially negative. Some
examples are given in Table 5. Where high-pressure data
are available, as in Table 6, the volumes of activation of
electron transfer are also negative, implying the existence
of electrostriction in the transition states. In summary, both
categories of data suggest that the process of electron
transfer in solution involves an increase in charge in the
transition state.

Kinetic evidence in favor of the Marcus model is also
lacking. For example, the solvent fluctuation theory
predicts that the rate constant for electron transfer should

be greater in less polar solvents, and that has never been
observed (Fig. 11). In addition, the solvent fluctuation
theory predicts that the graph of rate constant for electron
transfer versus driving force should be symmetric (an
inverted parabola), and that has never been observed
either. Given all these difficulties, it may be timely to
reconsider whether fluctuations of solvent dipoles really
are the principal cause of electron transfer in electrolyte
solutions.

The inverted region

The experimental observation of an inverted region (i.e., a
range of driving forces in which the rate constant for
electron transfer actually decreases as the driving force
increases) has been among the most remarkable discoveries
in modern chemical science. The phenomenon itself is
strongly counterintuitive, and its existence places power-
ful constraints on any prospective theory of electron
transfer. Thus, among the models of electron transfer
discussed in this article (Randles, Fletcher, Marcus), all
of them predict the existence of an inverted region,
although only the charge fluctuation model of Fletcher
predicts an asymmetric response without the introduction
of ad hoc hypotheses.

Rudolph A. Marcus noted as early as 1960 that his
model of electron transfer might be applied to the topic of
“inverted” behavior [67], but it took another 20 years
before inverted behavior was actually observed in an
electrochemical system. The results shown in Figs. 12
and 13 represent major experimental achievements in both
cases [68–70]. The central problem that had to be overcome
was that, for many combinations of solvent and redox
couple, the bimolecular rate constants for electron transfer
were obscured by diffusion control. However, the diffusion-
controlled rate constant for the solvated electron in tetrahy-
drofuran (THF) is very high (1.7×1011 L mol−1 s−1)
due to the small size of the solvated electron and the low
viscosity of the solvent. This fact permitted Abdul
Kadhum and Arthur Salmon to report the first incontro-
vertible observation of the inverted region of electron
transfer in 1982 [68]. The rate constants for the reaction of
solvated electrons with various solutes were measured in
tetrahydrofuran at 22 °C, and the results are shown in
Fig. 12.

A somewhat different approach to establishing the
existence of the inverted region was taken by John R.
Miller, Lidia T. Calcaterra, and Gerhard Ludwig Closs, who
synthesized a homologous series of eight compounds of the
general structure A–B–C where A was 4-biphenylyl, B was
a nonconjugated “bridge,” and C was one of a series of
eight conjugated moieties [69]. In all the compounds
tested, the distances between A and C were about the
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same (1.0 nm edge-to-edge). The experiment involved
subjecting solutions of these various molecules to 30-ps
pulses of electrons generated by the Argonne 20-MeV
Linac. The electrons were then captured by either A or C
with almost 100% efficiency, thus permitting the rate
constants for intramolecular electron transfer to be
estimated by measuring how fast the perturbed system
relaxed back to equilibrium. The results are shown in
Fig. 13. This elegant experiment established that, in
addition to intermolecular electron transfer, an inverted
region could also be observed for intramolecular electron
transfer.

In systems where the acceptor molecule has a low-lying
excited state, the presence of an inverted region may also
trigger chemiluminescence. Chemiluminescence is the
emission of light from a chemical reaction, greater than
the background emission caused by black body radiation.
Typical conditions that trigger chemiluminescence are
illustrated in Fig. 14. In the example shown, the activation
energy for electron transfer to the excited state is actually
less than the activation energy for electron transfer to the
ground state, so that the excited state of the product is
preferentially populated. When that happens, the electron in
the excited state can decay to the ground state by emitting a
photon of light.

Finally, it should be noted that an inverted region is not
predicted to occur in the case of heterogeneous electron
transfer from a metal electrode to a species in solution
because of the presence of a quasicontinuum of electronic
states inside the metal surface. The situation is illustrated in
Fig. 15. In this case, it is obvious that, for a highly
exergonic reaction, electron transfer will instead take place
from one of the many energy levels available below the
Fermi energy.

Quantum theory of electron transfer

Equalization of the energies of donor and acceptor states is
the crucial first step in electron transfer, and we have now
described several models of it. In this section, we focus on
the electron tunneling process itself.

After the donor and the acceptor states have equalized
their energies, the wave function of the electron becomes
time dependent and starts to build up inside the acceptor.
By the Born interpretation, the probability of finding the
electron also builds up inside the acceptor. In order to
describe this process mathematically and to develop a
complete expression for the rate of electron transfer, we
must find an acceptable solution to the time-dependent
Schrödinger equation. Unfortunately, this is not so easy. In
order to succeed, we shall find it necessary to employ a
severe approximation (the pseudopotential approximation)
to reduce the many-electron problem to a single-electron
problem. Then, to force a solution, we shall also need to use
Paul Dirac’s first-order perturbation theory. Along the way,
we shall additionally have to confront a number of
conceptual difficulties, not the least of which is the
uncertainty principle.

Fig. 11 Schematic diagram showing how the rate constants for
electron transfer (ket) vary with driving force (−ΔG0) and reorgani-
zation energy (λ) on the Marcus model, for solvents of different
polarity

Redox couple Ionic strength E0 (V) log ket ΔS* (J K−1 mol−1) Ref.

Ru(CN)6 3–/4– 0.1 M (aq) +0.92 4 −36 [59]

Ru(NH3)6 3+/2+ 0.013 M (aq) +0.07 3 −46 [60]

Ru(H2O)6 3+/2+ 5.0 M (aq) +0.22 1 −66 [61]

Fe(H2O)6 3+/2+ 0.1 M (aq) +0.74 0 −88 [62, 63]

Co(H2O)6 3+/2+ 0.5 M (aq) +1.84 1 −92 [64]

Fe(cp)2 1+/0 35 mM (acn) n/a 7 −45 [65, 66]

Table 5 Entropies of activation
(ΔS*) of some self-exchange
reactions

n/a not available

Table 6 Volumes of activation (ΔV*) of some self-exchange
reactions

Redox couple Ionic strength ΔV* (cm3 mol−1) Ref.

Fe(H2O)6 3+/2+ 0.5 M (aq) −11±2 (at 275 K) [63, 64]

Fe(cp)2 1+/0 n/a (d-acn) −7±2 (at 273 K) [66]
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The idea behind the pseudopotential approximation is to
replace the complicated effects of all the electrons in a
molecule (except one) with an effective potential, or
pseudopotential, so that the Schrödinger equation may be
solved more readily. In particular, the outermost electron is
assumed to move in the electrostatic field of the nuclei and
in the average field of all the other electrons. The innermost
electrons are thereby removed from consideration, and all

the focus is on the single electron in the highest occupied
molecular orbital. In the present work, we shall adopt this
approach, and we shall also use the simplest possible shape
of pseudopotential, namely a rectangular potential well.

Fig. 15 Plot of Gibbs energy versus reaction coordinate for
heterogeneous electron transfer from a metal electrode to a neutral
species in solution, in the case of a highly exergonic reaction. Here,
various Gibbs energies of electrons have been added to the Gibbs
energy of the reactant, producing the manifold of curves in the center
of the diagram. Due to the large number (quasicontinuum) of energy
levels in the metal, electron transfer can take place readily from an
energy level below the Fermi energy without thermal activation. This
activationless electron transfer process prevents inverted kinetics from
being observed on metal electrodes

Fig. 14 The origin of chemiluminescence. Plot of Gibbs energy
versus reaction coordinate for homogeneous electron transfer in an
electrolyte solution, in the case of a highly exergonic reaction. Note
that electron transfer into the ground state of the product is inhibited
by the inverted region, but electron transfer into the excited state of
the product is not. As a result, the excited state decays by emission of
a photon

Fig. 13 Experimental first-order rate constants for electron transfer as
a function of the total Gibbs energy change. Electrons transferred
intramolecularly across various internally bridged bifunctional mole-
cules in 2-methyl tetrahydrofuran at 296 K. The solvent dielectric
constant was 6.97. Data obtained by a pulse radiolysis technique. Data
derived from John R. Miller et al. [69]

Fig. 12 The first experimental observation of the inverted region.
Second-order rate constants for electron transfer from solvated
electrons to various solutes in THF at room temperature, plotted as a
function of electron affinity of solute (driving force). The solvent
dielectric constant was 7.52. (1) Phenol, (2) 4-aminobenzonitrile, (3)
2,4,6-trimethylpyridine, (4) pyridine, (5) α-methylstyrene, (6) benzo-
nitrile, (7) pyrimidine, (8) biphenyl, (9) trans-stilbene, (10) pyrene,
(11) nitrobenzene, (12) m-dinitrobenzene, (13) tetranitromethane, (14)
p-benzoquinone, (15) tetracyanoethylene, (16) galvinoxyl, and (17)
2,2-diphenyl-1-picrylhydrazyl. Data from Abdul A.H. Kadhum and G.
Arthur Salmon [68]
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The uncertainty principle

The uncertainty principle asserts that one cannot simulta-
neously measure the values of a pair of conjugate quantum
state properties to better than a certain limit of accuracy [4].
There is a minimum for the product of the uncertainties. Key
features of pairs of conjugate quantum state properties are
that they are uncorrelated and, when multiplied together, have
the dimensions of action (energy × time). Examples are (1)
momentum and location and (2) energy and lifetime. Thus,

$p $x � h�=2 ð5:1Þ

$U $t � h�=2 ð5:2Þ
Here, p is momentum of a particle (in one dimension); x

is location of a particle (in one dimension); U is energy of a
quantum state; t is lifetime of a quantum state; and ħ is the
reduced Planck constant,

h� ¼ h

2p
¼ 0:6582 eV� fsð Þ ð5:3Þ

The formal and general proof of the above inequalities
was first given by Howard Percy Robertson in 1929 [71].
He also showed that the uncertainty principle was a
deduction from quantum mechanics, not an independent
hypothesis.

As a result of the “blurring” effect of the uncertainty
principle, quantum mechanics is unable to predict the
precise behavior of a single electron at short times. But it
can still predict the average behavior of a large number of
electrons at short times, and it can also predict the time-
averaged behavior of a single electron over long times.
From the above equations, the energy measured over a
finite time interval ∆t has an uncertainty

$U � h�
2$t

ð5:4Þ

and therefore to decrease the energy uncertainty of an
electron to practical insignificance (<1 meV, say, which is
equivalent to about 1.602×10−22 J per electron), it is
necessary to observe it for t>330 fs. Conversely, if we wish
to observe the motion of electrons with femtosecond
accuracy, then we have to accept uncertainties in their
energy of the order of 1 eV.

Wave mechanics

As proposed by Erwin Schrödinger [3], the total wave
function Ψ of a (nonrelativistic) electron may be obtained
by solving the time-dependent equation

H< ¼ i h�ð Þ @<
@t

ð5:5Þ

Here, H is the differential operator known as the
Hamiltonian, which takes the form

H< ¼ � h�2

2m
r2< � eV < ð5:6Þ

where m is the electron mass; −e is the electron charge; and
V is the electrostatic potential.

Note that the electrostatic potential at a particular point
in space (x, y, z), created by a system of charges, is just the
change in potential energy that would occur if a test charge
of +1 were introduced at that point. So −eV is the
electrostatic potential energy of the electron in the electric
field. The Laplacian ∇2, which also appears in the
Schrödinger equation, is the square of the vector operator
∇(“del”), defined in Cartesian coordinates by

r8 x; y; zð Þ ¼ @8

@x
x̂þ @8

@y
ŷþ @8

@z
ẑ ð5:7Þ

As mentioned earlier, every solution of the Schrödinger
equation represents a possible state of the system. There is,
however, always some uncertainty associated with the
manifestation of each state. Due to the uncertainty, the
square of the modulus of the wave function |Ψ|2 may be
interpreted in two ways. Firstly and most abstractly, as the
probability that an electron might be found at a given point.
Secondly and more concretely, as the electric charge
density at a given point (averaged over a large number of
identically prepared systems for a short time or averaged
over one system for a long time).

Remark Almost all kinetic experiments in physics and
chemistry lead to statements about the relative frequencies
of events, expressed either as deterministic rates or as
statistical transition probabilities. In the limit of large
systems, these formulations are, of course, equivalent. By
definition, a transition probability is just the probability that
one quantum state will convert into another quantum state
in a single step.

Time-dependent perturbation theory

It is an unfortunate fact of quantum mechanics that exact
mathematical solutions of the time-dependent Schrödinger
equation are possible only at the very lowest levels of
system complexity. Even at modest levels of complexity,
mathematical solutions in terms of the commonplace
functions of applied physics are impossible. The recogni-
tion of this fact caused great consternation in the early days
of quantum mechanics. To overcome the difficulty, Paul
Dirac developed an extension of quantum mechanics called
“perturbation theory,” which yields good approximate
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solutions to many practical problems [72]. The only
limitation on Dirac’s method is that the coupling (orbital
overlap) between states should be weak.

The key step in time-dependent perturbation theory is to
split the total Hamiltonian into two parts, one of which is
simple and the other of which is small. The simple part
consists of the Hamiltonian of the unperturbed fraction of
the system, which can be solved exactly, while the small
part consists of the Hamiltonian of the perturbed fraction of
the system, which, though complex, can often be solved as
a power series. If the latter converges, solutions of various
problems can be obtained to any desired accuracy simply
by evaluating more and more terms of the power series.
Although the solutions produced by Dirac’s method are not
exact, they can nevertheless be extremely accurate.

In the case of electron transfer, we imagine a transition
between two well-defined electronic states, an occupied
state |D〉 inside an electron donor D, and an unoccupied
state |A〉 inside an electron acceptor A. The central problem
is then to determine how the wave function of the electron
builds up inside the unoccupied state |A〉.

Electron transfer between single states

The problem of modeling electron transfer between single
states has exercised the minds of chemists ever since the
earliest days of quantum theory. Today, the theory has
reached its highest state of development in the field of
spectroscopy. However, in spectroscopy, the transitions are
intramolecular, i.e., they occur between two allowed states
inside one electrostatic potential well, and the perturbation
that triggers the transition is typically the arrival of a
photon. In electrochemistry, the problem is of a different
type. The transitions are intermolecular, i.e., between two
allowed states inside two different electrostatic potential
wells, and the perturbation is typically the arrival of one
potential well within electron tunneling distance of the other.

If classical physics prevailed, the intermolecular transfer
of an electron from one single state to another single state
would be governed by the conservation of energy and
would occur only when both states had exactly the same
energy. But in the quantum world, the uncertainty principle
(in its time–energy form) briefly intervenes and allows
electron transfer between states even when their energies
are mismatched by a small amount $U ¼ h�=2$t (although
energy conservation still applies on average). As a result of
this complication, the transition probability of electrons
between two states exhibits a complex behavior. Roughly
speaking, the probability of electron transfer between two
precise energies inside two specified states has a component
that increases as t2, while the energy uncertainty decreases
as t−1. The net result is that the overall state-to-state
transition probability increases proportional to t.

To make these ideas precise, consider a perturbation
which is “switched on” at time t=0 and which remains
constant thereafter. This perturbation might be, for example,
a change in the electrostatic potential energy of the system
induced by the movement of a nearby charged species into
a new location. This introduces a perturbation H’ into the
Hamiltonian, so that the time-dependent Schrödinger
equation becomes

i h�ð Þ @<
@t
¼ H0 þ H 0ð Þ< ð5:8Þ

where Ψ(x, t) is the total electron wave function; H0 is the
unperturbed part of the total Hamiltonian operator; and H′
is the perturbed part of the total Hamiltonian operator.

Remark The total electron wave function Ψ(x, t) may be
regarded as the linear superposition of the individual wave
functions of all the possible states of the system, modified
by appropriate weighting coefficients ak. Thus,

< x; tð Þ ¼
X

akðtÞyk x; tð Þ ð5:9Þ

By the Born interpretation, |ak(t)|
2 is the probability that

the electron will manifest in the kth state when the system
interacts with the external world. The fact that the system
randomly localizes in a particular state k when it is
perturbed is called “the collapse of the wave function.”
For a two-state donor–acceptor system, the probability that
the electron localizes in the acceptor state is, of course, just
the probability that the electron delocalizes from the donor
state.

Now, according to our model, H′(t) has the following
form,

H 0ðtÞ ¼ 0 for t < 0 ð5:10Þ

H 0ðtÞ ¼ H 0 for t � 0 ð5:11Þ
That is, H′(t) is a step function with a constant value at

t≥0. Solving Eq. 5.8 under these boundary conditions, the
probability of electron transfer between two specified
energies UD and UA is

PDA U ; tð Þ � 2 H 0DAj j2
UA � UDj j2 1� cos

UA � UD½ �t
h�

� �� �
ð5:12Þ

where the modulus symbol denotes the (always positive)
magnitude of any complex number. This probability is
oscillatory and decays to 0 as time progresses, unless of
course UD = UA. This is the quantum equivalent of the
conservation of energy. The term H 0DA is commonly known
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as the “matrix element” of the donor–acceptor interaction
and is characteristic for a particular interaction. It has units of
energy and is related to the perturbation H 0 by the equation

H 0DA ¼
Z

y
»

AH
0yDdt ð5:13Þ

or, in Dirac’s compact notation,

H 0DA ¼< yA H 0j jyD > ð5:14Þ
In these equations, ψD and ψA are the wave functions of

the donor state and acceptor state, respectively. As always,
the asterisk indicates a complex conjugate, and the integral
over dτ indicates an integral over all space.

In many cases in the scientific literature in which
perturbation theory is applied to physical events, the
meaning of the matrix element H 0DA is far from clear.
Sometimes, it is referred to as the “coupling” between the
donor and the acceptor states, but that description adds little
to our understanding. However, in the special case under
consideration here, the electron localizes inside an acceptor
orbital; and, to a first approximation, the latter can be
modeled as a rectangular potential well whose potential is
constant and equal to that of the donor orbital. This allows
H′ to be transposed out of the integral to yield

H 0DA ¼ H 0
Z

y
»

AyDdt ð5:15Þ

or, in Dirac notation,

H 0DA ¼ H 0 < yA yDj > ð5:16Þ
In this special case, the meaning of H 0DA is unusually

clear. It is simply a measure of the extent to which the
donor and acceptor wave functions constructively interfere
(“overlap”). Indeed, the term

SDA ¼< yA yDj > ð5:17Þ
is widely referred to in molecular orbital theory as the
overlap integral.

Orbital overlap

The emergence of the overlap integral at the very heart of
electron transfer theory emphasizes the crucial role that
orbital overlap plays in determining the rates of electron
transfer reactions. Recall that the wave functions of donor
and acceptor states always have regions of both positive
and negative amplitude. It follows that if a donor–acceptor
interaction involves only positive or only negative overlap,
then the overlap integral SDA is finite, and electron transfer
is strongly favored (“symmetry-allowed”). Conversely, if
the donor–acceptor interaction involves roughly equal
amounts of positive and negative overlap, then the overlap

integral consists of two terms that nearly cancel, and elec-
tron transfer is strongly disfavored (“symmetry-disallowed”).
An example of symmetry-disallowed electron transfer is
illustrated in Fig. 16.

As a result of symmetry considerations, the angle of
interaction between donor and acceptor orbitals becomes a
factor in determining the rate of electron transfer. The
distance between the donor and acceptor orbitals also has a
very strong effect. Accordingly, for electron transfer
between ions in solution (or between an electrode and ions
in solution), it is obvious that in practice only a mean rate
of electron transfer is actually measured in the laboratory,
with the experimental results representing a sum over an
unknown range of internuclear angles and a sum over an
unknown range of internuclear distances.

Some examples of symmetry-allowed combinations of
donor and acceptor orbitals are collected in Table 7,
assuming that electron transfer is confined to the x-
direction. Similar tables could of course be constructed for
electron transfer confined to the y-direction and the z-
direction. Although the table neglects the possibility of an
experimental dispersion of internuclear angles, it does bring
to light one very important fact, which is that some pairs of
orbitals are much more reactive than others towards
electron transfer. It is evident that orbital symmetries must
be properly matched for electron transfer to occur at a
significant rate.

The simplest geometric measure of an electron transfer
system is the internuclear separation between the donor and
acceptor species. Unfortunately, there is no easy solution to
the problem of how this parameter affects the value of the
overlap integral SDA. However, it has been found by
innumerable ab initio quantum chemical calculations that
electron wave functions decay with a mixed exponential/
power-law functional form in the radial direction away
from atomic nuclei. This is, indeed, the basis of several
approximate methods in molecular simulation, based on
“Slater-type orbitals.” These are named after the physicist

Fig. 16 Diagram to illustrate symmetry-disallowed electron transfer
between an s-type donor orbital ψD and a pz-type acceptor orbital ψA.
In this case, the overlap integral SDA vanishes because the contribu-
tions from the volume elements dτ1 and dτ2 are of opposite sign and
hence cancel
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John C. Slater who introduced them in 1930 [73].
Although Slater-type orbitals were originally designed for
use in the computation of wave functions of atomic and
diatomic systems, they are often used today as trial
solutions for the wave functions of polyatomic systems,
and the exponential decay of the wave functions of Slater-
type orbitals at large r is widely thought to carry over into
larger systems.

Considering only the radial component of a wave
function, a typical Slater approximation takes the form

yðrÞ ¼ Nrn�1 exp �xrð Þ ð5:18Þ

where N is a normalization constant; n is a natural
number (1, 2, 3…) similar to the principal quantum
number; ξ (zeta) is a constant related to the shielding of
nuclear forces by low-lying electrons; and r is a distance
coordinate measured from the atomic nucleus. Given this
mixed exponential/power-law decay of the wave function of
a single electron, it seems reasonable to conjecture that the

overlap integral decays in a similar way, yielding the
asymptotic approximation

SDA � AxB exp �Cxð Þ ð5:19Þ
where x is the internuclear separation. Even more complex
behavior is expected at short range or if there is an
interaction with a third electronic state.

The effects of orbital overlap become most apparent
when homologous series of redox reactions are investigat-
ed. As an example, let us compare the electron self-
exchange reactions of the 1,10-phenanthroline complexes
of the Co(II)/Co(III) and the Fe(II)/Fe(III) couples. Note
that the 1,10-phenanthroline ligand has a high field
strength, and so its octahedral complexes are low spin [74].

The electronic structure of the Fe(II) ion is (Ar) 3d6. By
contrast, Co(II) has an additional proton in its nucleus and
therefore an additional electron in its d-orbitals, yielding the
electronic structure (Ar) 3d7. In the case of low-spin octahedral
complexes, this compels the Co(II) ion to place its seventh and
outer electron into an eg state, either a z2 orbital or a x2−y2

orbital. On the other hand, the Fe(II) ion can accommodate all
six of its d-electrons in t2g states (see Fig. 17).

Due to the large size of the 1,10-phenanthroline ligands,
the redox metal centers cannot approach each other closer
than about 1.4 nm. This means that the probability of direct
electron transfer between them is low. On the other hand,
indirect electron transfer may readily take place via the π*
orbital of the 1,10-phenanthroline ligand if there is symmetry-
allowed overlap between the highest occupied molecular
orbital of the redox metal center and the lowest unoccupied
molecular orbital of the ligand. As it happens, there is very
good overlap between the t2g orbitals of Fe(II) and the π*
orbitals of the 1,10-phenanthroline ligands, but there is very
poor overlap between the eg orbitals of Co(II) and the π*
orbitals of the 1,10-phenanthroline ligands. This explains
the following seemingly disparate rate constants [75, 76]:

Co phenð Þ3þ3 þCo phenð Þ2þ3
 ��! Co phenð Þ2þ3 þCo phenð Þ3þ3 ket ¼ 12 Lmol�1s�1

� �
Fe phenð Þ3þ3 þFe phenð Þ2þ3

 ��! Fe phenð Þ2þ3 þFe phenð Þ3þ3 ket ¼ 1:3� 107 Lmol�1s�1
� �

We see that the cobalt redox couple reacts more than
a million times slower than the iron redox couple, despite
having an unpaired electron in its outermost orbital! It
is evident that orbital symmetry is very important
indeed.

The above results have no classical rationale and can be
explained only by quantum mechanics. A corollary is that
attempts to find purely classical relationships (“cross-
relations”) between homologous pairs of redox reactions,

based on neglect of quantum mechanics, are doomed to
failure.

Finally, we may summarize the results of this section by
stating the three quantum conditions for successful electron
transfer:

1. The wave functions must overlap.
2. The wave functions must have the same energy.
3. The wave functions must interfere constructively.

Table 7 Symmetry-allowed combinations of donor and acceptor
orbitals in electron transfer

Donor
orbital

Allowed
acceptor (s-type)

Allowed
acceptor (p-type)

Allowed
acceptor (d-type)

s s px dx2�y2 dz2

px s px dx2�y2 dz2

py py dxy
pz pz dxz
dxy py dxy
dyz dyz
dxz pz dxz
dx2�y2 s px dx2�y2 dz2

dz2 s px dx2�y2

The x-axis is arbitrarily assumed to be the direction of mutual approach
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Interfacial electron transfer

From the quantum theory of electron transfer, we have
found that the probability of electron transfer between two
specified energies UD and UA can be written in the form

PDA U ; tð Þ � 2 H 0DAj j2
UA � UDj j2 1� cos

UA � UD½ �t
h�

� �� �
ð6:1Þ

This probability is oscillatory and decays to 0 as time
progresses, unless UD = UA, in which case the probability
grows with time. We have also found that the matrix
element H 0DA can be approximated by the expression

H 0DA� H 0
R
y

»
AyDdt

� H 0SDA
ð6:2Þ

where SDA is an overlap integral.
In the present section, we apply these results to the case

of heterogeneous (interfacial) electron transfer. We also
describe how multitudes of states can be accommodated by
the theory.

We begin by noting the identity

1� cos x ¼ 2sin2 x=2ð Þ ð6:3Þ

which allows us to cast Eq. 6.1 into the slightly modified
form

PDA U ; tð Þ � 4 H 0DAj j2
UA � UDj j2 sin

2 UA � UD½ �t
2 h�

� �
ð6:4Þ

Furthermore, by recalling the definition of the cardinal
sine function,

sincðxÞ ¼ sin x

x
ð6:5Þ

we can simplify the result still further:

PDA U ; tð Þ � H 0DAj j2t2
h�2 sinc2

UA � UD½ �t
2 h�

� �
ð6:6Þ

Equation 6.6 gives the time evolution of the probability
of electron transfer from the very earliest times, including
the effects of the uncertainty principle. In electrochemistry,
we are more concerned with longer times, when the effects
of the uncertainty principle have decayed away. In that
limit, Dirac [72] showed that

PDAðtÞ � 2pt
h

H 0DAj j2d UA � UDð Þ ð6:7Þ

where δ is the delta function. This formula is justly famous
because it allows the theory of single acceptor states to be
extended to multiple acceptor states.

Multiple acceptor states

To deal with this more complex case, it is necessary to
define a probability density of acceptor state energies
φA(U). Accordingly, we define φA(U) as the number of
acceptor states per unit of energy, and note that it has units
of joule−1 (dimensions of energy−1). If we further assume
that there is such a high density of states that it can be
treated as a continuum, then the transition probability
between the single-donor state |D〉 and the multitude of
acceptor states |A〉 becomes

PDAðtÞ � 2pt
h

H 0DAj j28A UDð Þ ð6:8Þ

where UD, the single energy of the donor state, is a constant.

Remark The parameter φA(UD) in Eq. 6.8 is not the full
density-of-states function φA(U) that it is often stated to be
in the literature. It is, in fact, the particular value of the
density-of-states function at the energy UD.

Finally, in the ultimate simplification of the theory, it is
possible to derive the rate constant for electron transfer ket
by differentiating the transition probability. This yields

ket ¼ 2p
h� H 0DAj j28A UDð Þ ð6:9Þ

It was Enrico Fermi who first referred to this equation as
a “golden rule” (in 1949), and the epithet has stuck [77].
The result, however, is due to Dirac [78].

Fig. 17 Electronic configuration and relative orientation of d-orbitals
in octahedral complexes of first-row transition elements. For low-spin
complexes, the first six electrons are found in t2g states. But the
seventh electron occupies an eg state
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Remark The golden rule applies only to cases where
electron transfer occurs from a single-donor state into a
multitude of acceptor states. If electrons originate from a
multitude of donor states—as they do during redox
reactions in electrolyte solutions—then the transition
probabilities must be summed (integrated) over the density
of states of the donor, viz.

ket ¼
Z þ1
�1

2p
h� H 0DAj j28A UDð Þ8D UDð ÞdUD ð6:10Þ

For all molecules in solution, their densities of states
arise from the random thermal motion of surrounding
charged species. As a result, their electrostatic potentials
vary billions of times every second.

The distribution of acceptor states

Ludwig Boltzmann brought the study of fluctuations inside
equilibrium systems to a high state of development in the
late nineteenth century [79]. Indeed, his methods are so
general that they can be applied to any small system in thermal
equilibrium with a large reservoir of heat. In our case, they
permit us to calculate the probability that a randomly selected
electrostatic fluctuation has a work of formation ΔG.

A system (such as an electrolyte solution) is in equilibrium
if the requirements of detailed balance are satisfied, namely,
that every process taking place in the system is exactly
balanced by its reverse process, so there is no net change
over time. This implies that the rate of formation of
fluctuations matches their rate of dissipation. In other words,
the fluctuations must have a distribution that is stationary. As
a result, at thermodynamic equilibrium, we know in advance
that the probability density function of any fluctuations must
be independent of time.

Boltzmann discovered a remarkable property of fluctua-
tions that occur inside systems at thermal equilibrium: their
probability always contains the “Boltzmann factor,”

exp
�ΔW

kBT

� �
ð6:11Þ

where ΔW is an appropriate thermodynamic potential; kB is
the Boltzmann constant; and T is the thermodynamic
(absolute) temperature. At constant temperature and pres-
sure, ΔW is the Gibbs energy of formation of the
fluctuation along the reaction coordinate, ΔGRC. Given
this knowledge, it follows that the probability density
function φA(V) of electrostatic potentials (V) must have
the stationary form

8AðV Þ ¼ A exp
�ΔGRC

kBT

� �
ð6:12Þ

where A is a time-independent constant. In the case of
charge fluctuations that trigger electron transfer, we have

ΔGRC ¼ 1

2
C ΔVð Þ2 ¼ 1

2

ΔVð Þ2
Λ

ð6:13Þ

where C is the capacitance between the reactant species
(including its ionic atmosphere) and infinity, and Λ is the
elastance (reciprocal capacitance) between the reactant
species and infinity. Defining Λe2/2 as the reorganization
energy λ, we immediately obtain

8AðV Þ ¼ A exp
� eV � eVAð Þ2

4l kBT

 !
ð6:14Þ

which means we now have to solve only for A. An elegant
method of solving for A is based on the observation that
φA(V) must be a properly normalized probability density
function, meaning that its integral must equal 1. This yields

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2

4pl kBT

s
ð6:15Þ

so that

8AðV Þ ¼
effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pl kBT
p exp

� eV � eVAð Þ2
4l kBT

 !
ð6:16Þ

We are now just one step from our goal, which is the
probability density of the energies of the acceptor states.
We merely need to introduce the additional fact that, if an
electron is transferred into an acceptor state whose electric
potential is V, then the electron’s energy must be −eV
because the charge on the electron is −e. Thus,

8A �eVð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pl kBT
p exp

� eV � eVAð Þ2
4l kBT

 !
ð6:17Þ

or, writing U = −eV,

8AðUÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pl kBT
p exp

� U � UAð Þ2
4l kBT

 !
ð6:18Þ

where U is the electron energy. This equation gives the
stationary, normalized probability density of the energies of
the acceptor states in a reactant species in an electrolyte
solution. It is a Gaussian density. If required, we can readily
get the unnormalized result simply by multiplying φA(U) by
the surface concentration of acceptor species. Finally, we
note that the corresponding formula for φD(U) is also
Gaussian

8DðUÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pl kBT
p exp

� U � UDð Þ2
4l kBT

 !
ð6:19Þ

where we have assumed that λA = λD = λ.
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Rate constant for homogeneous electron transfer

Combining Eqs. 6.9 and 6.19, at constant temperature and
pressure, we obtain

ket ¼ 2p
h� H 0DAj j2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pl kBT
p exp

�ΔG
»
RC

kBT

� �
ð6:20Þ

where ket is the rate constant for electron transfer; H 0DA is
the electronic coupling matrix element between the
electron donor and acceptor species; kB is the Boltzmann
constant; λ is the sum of the reorganization energies of the
donor and acceptor species; and ΔG

»
RC is the “Gibbs

energy of activation” for the reaction along the reaction
coordinate.

Referring to Fig. 18, it is clear that ΔG
»
RC is the total

Gibbs energy that must be transferred from the surround-
ings to both reactants in order to bring them to their mutual
transition states along the reaction coordinate. This is
simply

ΔG
»

RC ¼
lþ ΔG0ð Þ2

4l
ð6:21Þ

which implies that

ket ¼ 2p
h� H 0DAj j2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pl kBT
p exp

� lþ ΔG0ð Þ2
4l kBT

 !
ð6:22Þ

This equation is the central result of the modern theory
of quantum electrochemistry. It corresponds to the golden
rule formula of Dirac in the special case that the distribution
of acceptor states is Gaussian.

An equation of the form of Eq. 6.22 was first published
by Veniamin Levich and Revaz Dogonadze in 1959 [80].
Shortly afterwards, in 1962, the theory was extended to
heterogeneous electron transfer (e.g., to electron transfer
at metal electrodes) by Revaz Dogonadze and Yurii
Chizmadzhev [81].

We can also define a symmetry factor β such that

ΔG
»

RC ¼ b2l ð6:23Þ
and therefore

b ¼ dΔG
»
RC

dΔG0
¼ 1

2
1þ ΔG0

l

� �
ð6:24Þ

Remark β=1/2 approximately if ΔG0 is sufficiently small
(i.e., the electron transfer reaction is neither strongly
exergonic nor strongly endergonic), and β=1/2 exactly for
a self-exchange reaction (ΔG0=0).

Combining Eqs. 5.19 and 6.2, we also obtain

H 0DA� H 0SDA
� HxB exp �Cxð Þ ð6:25Þ

where x is the distance of closest approach of the donor and
acceptor (i.e., a function of the ionic strength of the solution).

The validity of the Gibbs energy diagram in Fig. 18
relies on the existence of friction between the reactant
species and the environment. This is consistent with the fact
that each reactant species continually and randomly
exchanges energy with the electrolyte solution and thus
causes stochastic motion along the reaction coordinate. If
we had used a potential energy diagram instead, this would
have implied the nonexistence of friction between the
reactant species and the environment. And in that case, each
reactant species would conserve its own energy and hence
would exhibit deterministic motions (such as harmonic
oscillations) along the reaction coordinate.

In transition-state theory, it is assumed that the continual
and random exchange of energy between the reactant
species and the electrolyte solution is always fast enough
to maintain the equilibrium population of reactant species at
all points along the Gibbs energy surface, so that the high-
energy population is never depleted by the electron transfer
process. The opposite situation, in which the high-energy
population of reactant species on the Gibbs energy diagram
is actually depleted by the electron transfer process, is
known as Kramer’s problem [82]. The rate derived from
transition-state theory is therefore an upper bound on the
solution of Kramer’s problem.

Fig. 18 Gibbs energy diagram for homogeneous one-electron transfer
between two noninteracting species in solution. As defined in the
present work, the symmetry factor β corresponds to the fractional
charge of the fluctuation on the ionic atmosphere of the acceptor
molecule at the moment of electron transfer. After Fletcher [22]
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Finally, we note that Fig. 18 also explains why
simultaneous two-electron transfer reactions are much rarer
than one-electron transfer reactions. All things being
equal, they require four times the activation energy. Thus,
they are likely to be observed only in those very rare
circumstances where the relative disposition of the Gibbs
energy curves is such that the electron transfer process is
nearly activationless.

Rate constant for heterogeneous electron transfer

In the case of electron transfer across a phase boundary (e.g.,
electron transfer from an electrode into a solution), the law of
conservation of energy dictates that the energy of the
transferring electron must be added into that of the acceptor
species, such that the sum equals the energy of all the product
species. At constant temperature and pressure, the energy of
the transferring electron is just its Gibbs energy.

Let us denote by superscript bar the Gibbs energies of
species in solution after the energy of the transferring
electron has been added to them (see Fig. 19). We have

Greactant ¼ Greactant þ qE ð6:26Þ

Greactant ¼ Greactant � eE ð6:27Þ
where e is the unit charge and E is the electrode potential of
the injected electron. For the conversion of reactant to
product, the overall change in Gibbs energy is

ΔG
0 ¼ Gproduct � Greactant ð6:28Þ

ΔG
0 ¼ Gproduct � Greactant � eEð Þ ð6:29Þ

ΔG
0 ¼ Gproduct � Greactant

� 	þ eE ð6:30Þ

ΔG
0 ¼ ΔG0 þ eE ð6:31Þ

In the normal region of electron transfer, for a metal
electrode, it is generally assumed that the electron tunnels
from an energy level near the Fermi energy, implying
eE � eEF. Thus, for a heterogeneous one-electron transfer
process to an acceptor species in solution, we can use the
golden rule directly [81],

ket ¼ 2p
h� H 0DAj j2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pl kBT
p exp

� lþ ΔG0 þ eEFð Þ2
4l kBT

 !
ð6:32Þ

where λ is the reorganization energy of the acceptor species
in solution, and eEF is the Fermi energy of the electrons
inside the metal electrode. Or, converting to molar
quantities

ket ¼ 2p
h� H 0DAj j2 NAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p lmRT
p exp

� lm þ ΔG0
m þ FEF

� 	2
4lmRT

 !
ð6:33Þ

where ket is the rate constant for electron transfer; ħ is the
reduced Planck constant; HDA is the electronic coupling
matrix element between a single-electron donor and a
single-electron acceptor; NA is the Avogadro constant; λm is
the reorganization energy per mole; ΔG0

m is the difference
in molar Gibbs energy between the acceptor and the
product; and (−FEF) is the molar Gibbs energy of the
electron that tunnels from the Fermi level of the metal
electrode into the acceptor.

Equation 6.33 behaves exactly as we would expect. The
more negative the Fermi potential EF inside the metal
electrode (i.e., the more negative the electrode potential),
the greater is the rate constant for electron transfer from the
electrode into the acceptor species in solution.

Some notational simplification is achieved by introduc-
ing the definition

�h � ΔG0
m

F
þ EF ð6:34Þ

where η is called the “overpotential.” With this definition,
increasing overpotential η corresponds to increasing rate of
reaction. In other words, with this definition, the over-
potential is a measure of the “driving force for the

Fig. 19 Gibbs energy diagram for heterogeneous one-electron
transfer from an electrode to an initially neutral acceptor molecule in
solution. The superscript bar indicates that the Gibbs energy of the
injected electron has been added to that of the reactant
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reaction.” The same inference may be drawn from the
equation

h � � $G
0
m

F
ð6:35Þ

An immediate corollary is that the condition η=0
corresponds to zero driving force (thermodynamic equilib-
rium) between the reactant, the product, and the electrode
ð$G0

m ¼ 0Þ.
By defining a molar Gibbs energy of activation along the

reaction coordinate,

$G
»

m ¼
lm þ $G0

m þ FEF

� 	2
4lm

ð6:36Þ

¼ lm � Fhð Þ2
4lm

ð6:37Þ

we can conveniently put Eq. 6.33 into the standard
Arrhenius form

ket ¼ 2p
h� H 0DAj j2 NAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p lm RT
p exp

�$G»

m

RT

 !
ð6:38Þ

We can further simplify the analysis by defining the
partial derivative @ $G

»

m

.
@ �Fhð Þ at constant $G0

m as the
symmetry factor β, so that

$G
»

m ¼ b2lm ð6:39Þ
where

b ¼ @ $G
»

m

@ �Fhð Þ ¼
1

2
1� Fh

lm

� �
ð6:40Þ

This latter equation highlights the remarkable fact that
electron transfer reactions require less thermal activation
energy $G

»

m


 �
as the overpotential (η) is increased.

Expanding Eq. 6.37 yields

$G
»

m ¼
l2m � 2lmFhþ F2h2

4lm
ð6:41Þ

which rearranges into the form

$G
»

m ¼
lm
4
� 2b þ 1

4

� �
Fh ð6:42Þ

Now substituting back into Eq. 6.38 yields

ket ¼ 2p
h� H 0DAj j2 NAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p lmRT
p exp

�lm
4RT

� �
exp

2b þ 1ð ÞFh
4RT

� �
ð6:43Þ

ket ¼ k0 exp
2b þ 1ð ÞFh

4RT

� �
ð6:44Þ

where the parameter k0 is a complicated function of
temperature T but is independent of overpotential η. An
analogous equation applies to the back reaction, except that
β is replaced by (1−β). Thus, for the overall current–
voltage curve, we may write

I ¼ I0 exp
2b þ 1ð ÞFh

4RT

� �
� exp

� 3� 2bð ÞFh
4RT

� �� 
ð6:45Þ

where

b ¼ 1

2
1� Fh

lm

� �
ð6:46Þ

Equation 6.45 may be compared directly with experi-
mental data. However, it should not be forgotten that I0 and
β are both functions of temperature T. (In the case of β, via
the dependence of λm on T.) Thus, the temperature should
be measured and, preferably, controlled.

Equation 6.45 is the current–voltage curve for a
reversible, one-electron transfer reaction at thermal equilib-
rium. It differs from the “textbook” Butler–Volmer equation
[83, 84] namely

I ¼ I0 exp
bfFh
RT

� �
� exp

�bbFh
RT

� �� 
ð6:47Þ

because the latter was derived on the basis of a different
definition of the symmetry factor. However, the models can
be reconciled via the following transformation formulas:

bf ¼
2b þ 1

4
ð6:48Þ

and

bb ¼
3� 2b

4
ð6:49Þ

so that

bf ¼
1

2
1� Fh

2lm

� �
ð6:50Þ

and

bb ¼
1

2
1þ Fh

2lm

� �
ð6:51Þ

It is unfortunate (and not widely realized) that the
symmetry factor that is used in electron transfer theory is
not the same as the symmetry factor that is used in
electrochemistry textbooks. However, for avoidance of
ambiguity, we shall hereafter use only the “electrochemis-
try” parameters βf and βb.
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Tafel slopes for multistep reactions

As shown above, the current–voltage curve for a reversible,
one-electron transfer reaction at thermal equilibrium may be
written in the form

I ¼ FACk0 exp
bfFh
RT

� �
� exp

�bbFh
RT

� �� 
ð6:52Þ

which corresponds to the reaction

Aþe�  ��! B ð6:53Þ
In what follows, we seek to derive the current–voltage

curves corresponding to the more complex reaction

Aþne�  ��! Z ð6:54Þ
For simplicity, we consider the forward and backward

parts of the rate-determining step independently. This makes
the rate-determining step appear irreversible in both direc-
tions. The general approach is due to Roger Parsons [85].

We begin by writing down all the electron transfer
reactions steps separately:

ð6:55Þ
Next, we adopt some simplifying notation. First, we

define np to be the number of electrons transferred prior to
the rate-determining step. Then, we define nr to be the
number of electrons transferred after the rate-determining
step. In between, we define nq to be the number of electrons
transferred during one elementary act of the rate-
determining step. (This is a ploy to ensure that nq can take
only the values 0 or 1, depending on whether the rate-
determining step is a chemical reaction or an electron
transfer. This will be convenient later.)

Restricting attention to the above system of unimolecular
steps, the total number of electrons transferred is

n ¼ np þ nq þ nr ð6:56Þ

We now make the following further assumptions. (1)
The exchange current of the rate-determining step is at
least 100 times less than that of any other step; (2) the
rate-determining step of the forward reaction is also the
rate-determining step of the backward reaction; (3) no
steps are concerted; (4) there is no electrode blockage by
adsorbed species; and (5) the reaction is in a steady state.
Given these assumptions, the rate of the overall reaction
is

Itotal ¼ I0 exp np þ nqbf
� �

F
RT h

� 	� exp � nr þ nqbb
� �

F
RT h

� 	� �
¼ I0 exp afFh=RTð Þ � exp �abFh=RTð Þ½ �

ð6:57Þ

In the above expression, αf should properly be called
the transfer coefficient of the overall forward reaction,
and correspondingly αb should properly be called the
transfer coefficient of the overall backward reaction. But
in the literature, they are often simply called transfer
coefficients.

It may be observed that nr does not appear inside the first
exponential in Eq. 6.57. This is because electrons that are
transferred after the rate-determining step serve only to
multiply the height of the current/overpotential relation and
do not have any effect on the shape of the current/
overpotential relation. For the same reason, np does not
appear inside the second exponential in Eq. 6.57.

Although Eq. 6.57 has the same outward form as the
Butler–Volmer equation (Eq. 6.47), actually the transfer
coefficients αf and αb are very different to the modified
symmetry factors βf and βb and should never be confused
with them. Basically, αf and αb are composite terms
describing the overall kinetics of multistep many-electron
reactions, whereas βf and βb are fundamental terms
describing the rate-determining step of a single-electron
transfer reaction. Under the assumptions listed above, they
are related by the equations

af ¼ np þ nqbf ð6:58Þ

and

ab ¼ nr þ nqbb ð6:59Þ

A century of electrochemical research is condensed into
these equations. And the key result is this: if the rate-
determining step is a purely chemical step (i.e., does not
involve electron transfer), then nq=0 and the modified
symmetry factors βf and βb disappear from the equations
for αf and αb. Conversely, if the rate-determining step is an
electrochemical step (i.e., does involve electron transfer),
then nq=1 and the modified symmetry factors βf and βb
enter the equations for αf and αb.

J Solid State Electrochem (2010) 14:705–739 735



Remark αf and αb differ from βf and βb in another
important respect. The sum of βf and βb is

bf þ bb ¼ 1 ð6:60Þ
whereas the sum of αf and αb is

af þ ab ¼ n ð6:61Þ
That is, the sum of the transfer coefficients of the

forward and backward reactions is not necessarily unity.
This stands in marked contrast to the classic case of a
single-step one-electron transfer reaction, for which the sum
is always unity. Furthermore, in systems where the rate-
determining steps of the forward and backward reactions
are not the same—a common occurrence—the sums of αf

and αb have no particular diagnostic value. Experimentally,
it is traditional to determine the values of αf and αb by
evaluating the expression

@h
@ log Ij j ¼

2:303RT

afF
¼ b ð6:62Þ

where b is called the “Tafel slope” [86]. Some theoretical
values of b for multistep electrochemical reactions [87],
derived via Eq. 6.58, are listed in Table 8.

In order to simplify the data in the table, we have
assumed 2.303RT/F≈60 mVat 25 °C. (Actually, the precise
value is 59.2 mV.) We have also written βf in the form

bf ¼
1

2
1� Fh

2lm

� �
¼ 1=2 1�Δð Þ ð6:63Þ

Although most of the tabulated Tafel slopes have been
derived previously, it is interesting to see them compiled in
one list because it emphasizes their shared assumptions.
Some of these are:

1. The ambient solution is at thermodynamic equilibrium.
2. All reaction steps are at thermodynamic equilibrium,

except the rate-determining step.
3. There is weak orbital overlap between the electrode and

the acceptor species.
4. The acceptor species experience Gaussian fluctuations

of energy.

The effects of weakening these assumptions are not well
cataloged, either theoretically or experimentally.

Conclusions

The investigation of electron transfer reactions presents
problems of remarkable difficulty and complexity. Tradi-
tionally, the theory has been modeled at various levels, both
quantum and classical, and it is not very easy to see how
the results are connected. There are also problems of scale.
Recently, more than 20,000 research papers related to
electron transfer have become accessible via the internet,
and more than 1.5 million web pages. Given this torrent of
information, the development of a satisfactory synthesis of
theory and experiment is still very much a “work in
progress.” The history of electron transfer has yet to be
written.

Throughout the compilation of the present document,
much effort was expended in identifying the most original
ideas from the past century and placing them in a common
mathematical framework. Some interesting generalizations
emerged from this process. Perhaps the most intriguing was
the discovery that electron transfer could be triggered by
two fundamentally different phenomena—mechanical dis-
tortions or charge fluctuations. These possibilities may be
used to replace the earlier categorizations of inner-sphere
and outer-sphere kinetics, to which they roughly corre-
spond, though not exactly. Assuredly, the inner-sphere
contribution to the activation energy is usually due to
mechanical distortions, and the outer-sphere contribution is
usually due to charge fluctuations, but there is actually no
fundamental reason why this should be a universal truth. In
many systems, it is surely the case that there are mechanical

Table 8 Tafel slopes for multistep electrochemical reactions

Reaction scheme Tafel slope b (mV decade−1)

bCE ∞bCED ∞bE 120/(1–∆)bEE 120/(1–∆)bEEE 120/(1–∆)bEC 120/(1–∆)bECE 120/(1–∆)
CbE 120/(1–∆)
CbED 120/(1–∆)
EbC 60 exactly

EbCE 60 exactly

EbE 40/(1–∆/3)
EbEE 40/(1–∆/3)
ECbE 40/(1–∆/3)
EEbC 30 exactly

CEbD 30 exactly

EEbE 24/(1–∆/5)
EEEbC 20 exactly

E indicates an electrochemical step; C indicates a chemical step; D
indicates a dimerization step; and a circumflex accent (^) indicates a
rate-determining step. The word “exactly” signifies “a result indepen-
dent of β.” The parameter ∆=Fη/2λm. We also assume 2.303RT/F≈
60 mV at 25 °C. (The precise value is 59.2 mV)
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distortions in the outer sphere or charge fluctuations in the
inner sphere or both, and these possibilities should now be
considered.

The present work also sheds light on the literature
confusion between Gibbs energy diagrams and potential
energy diagrams. A Gibbs energy diagram is appropriate
for thermally activated reactions. In such cases, the reactive
species continually and randomly exchange heat with the
environment (the heat bath), and therefore they move
randomly up and down both sides of the Gibbs energy
parabola. By contrast, the potential energy diagram is
appropriate for situations in which the reactive species do
not exchange heat with the environment, so that they are
essentially isolated. In these cases, the reactive species
conserve energy by transferring it between potential energy
states and kinetic energy states, in the manner of an
oscillator.

Limited space in the final document compelled some
difficult choices. After much deliberation, I decided to omit
discussion of proton tunneling, superexchange, and scan-
ning tunneling microscopy. These are, of course, important
topics, but they represent elaborations of the core theory,
rather than being core theory per se. Thankfully, the choice
of experimental data was a little easier. The data listed in
the tables and figures are all derived from rare, and in many
cases unique, experiments in which the effects of funda-
mental variables were unambiguously determined. One can
only marvel at the skill of the original researchers. To this
day, it remains a source of deep frustration that the
fundamental variables of electron transfer theory (such as
the orbital overlap and the density of energy states) are so
difficult to control experimentally.

Much recent research has been directed towards molec-
ular electronics. This is a rapidly developing field that
typically involves electron transfer between two metal
electrodes separated by a single molecule. Numerous
studies have indicated that the rates of reaction are
dominated by contributions from non-Fermi energies in
the metals. However, the theory is new and largely
untested, and that is why I have not reviewed it in the
present work. For further information, the reader is referred
to the recent paper of Zhang et al. [88].

In the present work, an interesting distinction has
emerged between the charge fluctuation model and the
solvent fluctuation model. In the normal range of electron
transfer, on the charge fluctuation model, the reorganization
energy λ has the value [22]

l ¼ 1

2
e2

1

4p"0

� �
1

" 1ð Þ
� �

1

aD
þ 1

aA
� 2

d

� �
ð7:1Þ

where −e is the charge on the electron; ε0 is the permittivity
of free space; ε(∞) is the relative permittivity (dielectric

constant) of the solution in the high frequency limit; aD is
the radius of the donor supermolecule; aA is the radius of
the acceptor supermolecule; and d is the center-to-center
distance between the supermolecules. In general, the radius
of each supermolecule consists of three terms—(1) the ionic
radius, (2) the thickness of the compact layer (a constant
independent of concentration of supporting electrolyte), and
(3) the thickness of the diffuse layer (a variable that
depends on the ionic strength of supporting electrolyte).
By contrast, on the solvent fluctuation model, the reorga-
nization energy λ has the value [54]

l ¼ 1

2
e2

1

4p"0

� �
1

" 1ð Þ �
1

" 0ð Þ
� �

1

rD
þ 1

rA
� 2

d

� �
ð7:2Þ

where −e is the charge on the electron; ε0 is the permittivity
of free space; ε(∞) is the relative permittivity (dielectric
constant) in the high frequency limit; ε(0) is the relative
permittivity (dielectric constant) in the low frequency limit;
rD is the radius of the donor molecule (including any inner
coordination shell); and rA is the radius of the acceptor
molecule (including any inner coordination shell). It is
immediately clear that Eq. 7.2 does not take ionic strength
into account, whereas Eq. 7.1 does.

Combination of Eq. 6.22 with Eqs. 5.16 and 5.17 yields
the new result

ket ¼ 2p
h� H 0j j2S2DA

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pl kBT
p exp

� lþ ΔG0ð Þ2
4l kBT

 !
ð7:3Þ

where H′ is a constant and SDA is the extent of overlap
between the donor and the acceptor orbitals (i.e., the
overlap integral). This expression is, I think, more
transparent than the usual golden rule formulation because
it makes explicit the need for orbital overlap (and
constructive interference) between the donor and the
acceptor species.

Finally, regarding an experimental test of the three
primary theories of the reaction coordinate (Randles,
Fletcher, Marcus), perhaps the most telling differences
between them may be found in their vastly different
predictions regarding changes in the relative permittivity
(dielectric constant) of the solvent. The Randles “bond-
stretching” model suggests that electron transfer to a
specified complex ion should be essentially independent
of solvent polarity. By contrast, the Fletcher “charge
fluctuation” model suggests that electron transfer should
be strongly catalyzed by polar solvents in the inverted
and superverted regions. Finally, the Marcus “dielectric
fluctuation” model suggests that electron transfer should
be strongly inhibited by polar solvents (such as water)
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and strongly catalyzed by nonpolar solvents (such as
carbon tetrachloride) in all regions of driving force.
Given these differences, what is now needed is an
experimentum crucis in which the relative permittivity
(dielectric constant) of the solvent is treated as an
experimental variable. That remains a tantalizing goal
for the twenty-first century.
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